Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-16T07:29:39.748Z Has data issue: false hasContentIssue false

Detection of species-specific antibody response of humans and mice bitten by sand flies

Published online by Cambridge University Press:  06 January 2005

I. ROHOUSOVA
Affiliation:
Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
S. OZENSOY
Affiliation:
Department of Parasitology, Medical School and Hospital, Ege University, 35100 Bornova-Izmir, Turkey
Y. OZBEL
Affiliation:
Department of Parasitology, Medical School and Hospital, Ege University, 35100 Bornova-Izmir, Turkey
P. VOLF
Affiliation:
Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic

Abstract

Sand fly saliva plays an important role in Leishmania transmission. We characterized the host antibody response to saliva from 3 sand fly species. Specific IgG was observed in sera from experimentally bitten mice as well as in sera from individuals living in the endemic area of Leishmania tropica in Sanliurfa, Turkey. Sera of Sanliurfa inhabitants showed high IgG levels against saliva of Phlebotomus sergenti and P. papatasi, the 2 most abundant sand fly species in this area, but did not react with saliva of the New World sand fly, Lutzomyia longipalpis. Patients with active Le. tropica lesions possessed significantly higher anti-P. sergenti IgG levels than the healthy individuals from the same place while anti-P. papatasi IgG levels were equal in both groups. Major protein bands in P. papatasi and P. sergenti saliva reacted with both, human and mice sera; in P. papatasi, however, mouse IgG recognized preferentially the 42 kDa protein band while the human IgG reacted strongly with the 30 kDa band. Our data suggest that the antibody response to sand fly saliva could be used for monitoring the exposure of humans and other hosts to sand flies and might be used as a marker of risks for Leishmania transmission in endemic areas.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BARRAL, A., HONDA, E., CALDAS, A., COSTA, J., VINHAS, V., ROWTON, E. D., VALENZUELA, J. G., CHARLAB, R., BARRAL-NETTO, M. & RIBEIRO, J. M. C. ( 2000). Human immune response to sand fly salivary gland antigens: a useful epidemiological marker? American Journal of Tropical Medicine and Hygiene 62, 740745.Google Scholar
BELKAID, Y., KAMHAWI, S., MODI, G., VALENZUELA, J., NOBEN-TRAUTH, N., ROWTON, E., RIBEIRO, J. & SACKS, D. L. ( 1998). Development of a natural model of cutaneous leishmaniasis: Powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. Journal of Experimental Medicine 188, 19411953.CrossRefGoogle Scholar
BOLLAG, D. M. & EDELSTEIN, S. J. ( 1991). Protein Methods. Wiley-Liss, New York.
BRUMMER-KORVENKONTIO, H., PALOSUO, T., FRANCOIS, G. & REUNALA, T. ( 1997 a). Characterization of Aedes communis, Aedes aegypti and Anopheles stephensi mosquito saliva antigens by immunoblotting. International Archives of Allergy and Immunology 112, 169174.Google Scholar
BRUMMER-KORVENKONTIO, H., PALOSUO, K., PALOSUO, T., BRUMMER-KORVENKONTIO, M., LEINIKKI, P. & REUNALA, T. ( 1997 b). Detection of mosquito saliva-specific IgE antibodies by capture ELISA. Allergy 52, 342345.Google Scholar
BRUMMER-KORVENKONTIO, H., LAPPALAINEN, P., REUNALA, T. & PALOSUO, T. ( 1994). Detection of mosquito saliva-specific IgE and IgG4 antibodies by immunoblotting. Journal of Allergy and Clinical Immunology 93, 551555.CrossRefGoogle Scholar
CHEN, Y. L., SIMONS, F. E. R. & PENG, Z. ( 1998). A mouse model of mosquito allergy for study of antigen-specific IgE and IgG subclass responses, lymphocyte proliferation, and IL-4 and IFN-gamma production. International Archives of Allergy and Immunology 116, 269277.CrossRefGoogle Scholar
CROSS, M. L., CUPP, M. S., CUPP, E. W., RAMBERG, F. B. & ENRIQUEZ, F. J. ( 1993). Antibody-response of BALB/c mice to salivary antigens of hematophagous black flies (Diptera, Simuliidae). Journal of Medical Entomology 30, 725734.CrossRefGoogle Scholar
GHOSH, K. N. & MUKHOPADHYAY, A. ( 1998). The effect of anti-sandfly saliva antibodies on Phlebotomus argentipes and Leishmania donovani. International Journal for Parasitology 28, 275281.CrossRefGoogle Scholar
GILLESPIE, R. D., MBOW, M. L. & TITUS, R. G. ( 2000). The immunomodulatory factors of bloodfeeding arthropod saliva. Parasite Immunology 22, 319331.CrossRefGoogle Scholar
GOMES, R. B., BRODSKYN, U., DE OLIVEIRA, C. I., COSTA, J., MIRANDA, J. C., CALDAS, A., VALENZUELA, J. G., BARRAL-NETTO, M. & BARRAL, A. ( 2002). Seroconversion against Lutzomyia longipalpis saliva concurrent with the development of anti-Leishmania chagasi delayed-type hypersensitivity. Journal of Infectious Diseases 186, 15301534.CrossRefGoogle Scholar
KAMHAWI, S., BELKAID, Y., MODI, G., ROWTON, E. & SACKS, D. ( 2000). Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290, 13511354.CrossRefGoogle Scholar
KONISHI, E. ( 1990). Distribution of immunoglobulin-E antibody-levels to salivary-gland extracts of Aedes albopictus (Diptera, Culicidae) in several age-groups of a Japanese population. Journal of Medical Entomology 27, 519522.CrossRefGoogle Scholar
PENG, Z. & SIMONS, F. E. R. ( 1997). Cross-reactivity of skin and serum specific IgE responses and allergen analysis for three mosquito species with worldwide distribution. Journal of Allergy and Clinical Immunology 100, 192198.CrossRefGoogle Scholar
PENG, Z., LI, H., ESTELLE, F. & SIMONS, R. ( 1998). Immunoblot analysis of salivary allergens in 10 mosquito species with worldwide distribution and the human IgE responses to these allergens. Journal of Allergy and Clinical Immunology 101, 498505.CrossRefGoogle Scholar
PENG, Z. K., RASIC, N., LIU, Y. & SIMONS, F. E. R. ( 2002). Mosquito saliva-specific IgE and IgG antibodies in 1059 blood donors. Journal of Allergy and Clinical Immunology 110, 816817.CrossRefGoogle Scholar
PENG, Z., YANG, M. & SIMONS, F. E. R. ( 1996). Immunologic mechanisms in mosquito allergy: correlation of skin reaction with specific IgE and IgG antibodies and lymphocyte proliferation response to mosquitoantigens. Annals of Allergy, Asthma and Immunology 77, 2344.CrossRefGoogle Scholar
PENNEYS, N. S., NAYAR, J. K., BERNSTEIN, H., KNIGHT, J. W. & LEONARDI, C. ( 1989). Mosquito salivary-gland antigens identified by circulating human-antibodies. Archives of Dermatology 125, 219222.CrossRefGoogle Scholar
REED, S. G. ( 2001). Leishmaniasis vaccination: targeting the source of infection. Journal of Experimental Medicine 194, F7F9.CrossRefGoogle Scholar
REUNALA, T., BRUMMER-KORVENKONTIO, H., PALOSUO, K., MIYANIJ, M., RUIZ-MALDONADO, R., LOVE, A., FRANCOIS, G. & PALOSUO, T. ( 1994). Frequent occurrence of IgE and IgG4 antibodies against saliva of Aedes communis and Aedes aegypti mosquitoes in children. International Archives of Allergy and Immunology 104, 366371.CrossRefGoogle Scholar
SACKS, D. L. ( 2001). Leishmania-sand fly interactions controlling species-specific vector competence. Cellular Microbiology 3, 1824.CrossRefGoogle Scholar
VALENZUELA, J. G., BELKAID, Y., GARFIELD, M. K., MENDEZ, S., KAMHAWI, S., ROWTON, E. D., SACKS, D. L. & RIBEIRO, J. M. C. ( 2001). Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. Journal of Experimental Medicine 194, 331342.CrossRefGoogle Scholar
VALENZUELA, J. G. ( 2002). High-throughput approaches to study salivary proteins and genes from vectors of disease. Insect Biochemistry and Molecular Biology 32, 11991209.CrossRefGoogle Scholar
VOLF, P., OZBEL, Y., AKKAFA, F., SVOBODOVA, M., VOTYPKA, J. & CHANG, K. P. ( 2002). Sand flies (Diptera: Phlebotominae). in Sanliurfa, Turkey: relationship of Phlebotomus sergenti with the epidemic of anthroponotic cutaneous leishmaniasis. Journal of Medical Entomology 39, 1215.Google Scholar
VOLF, P. & ROHOUSOVA, I. ( 2001). Species-specific antigens in salivary glands of phlebotomine sandflies. Parasitology 122, 3741.CrossRefGoogle Scholar
VOLF, P., TESAROVA, P. & NOHYNKOVA, E. ( 2000). Salivary proteins and glycoproteins in phlebotomine sandflies of various species, sex and age. Medical and Veterinary Entomology 14, 251256.CrossRefGoogle Scholar