Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T19:48:49.922Z Has data issue: false hasContentIssue false

Density-dependent processes in the transmission of human onchocerciasis: relationship between the numbers of microfilariae ingested and successful larval development in the simuliid vector

Published online by Cambridge University Press:  06 April 2009

M. G. Basáñez
Affiliation:
Department of Biology, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BB, UK Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
J. H. F. Remme
Affiliation:
UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, World Health Organization, 20 Av. Appia, CH-1211 Geneva 27, Switzerland
E. S. Alley
Affiliation:
Onchocerciasis Control Programme in West Africa, P.O. Box 549, Ouagadougou, Burkina Faso
O. Bain
Affiliation:
Muséum d 'Histoire Naturelle, 61 rue Buff on 75231, Paris Cedex 05, France
A. J. Shelley
Affiliation:
Natural History Museum, Cromwell Road, London SW7 5BD, UK
G. F. Medley
Affiliation:
Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
R. M. Anderson
Affiliation:
Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK

Summary

A previous paper reported that the intake of Onchocerca volvulus microfilariae (mff) by different species of Simulium is essentially proportional to the parasite load in the skin of infected carriers. This paper examines the fate of the ingested mff in susceptible vectors to assess the relationship between parasite intake and infective larval output in blackfly species with and without well-developed cibarial armatures. Analysis is based on data from 3 onchocerciasis endemic areas: Guatemala (S. ochraceum s.l.), West Africa (S. damnosum s.l./S. sirbanum) and the Amazonian focus between South Venezuela and Northern Brazil (S. guianense and S. oyapockense s.l.). The data, which include published and unedited information collected in the field, record experimental studies of parasite uptake by wild flies maintained in captivity until the completion of the extrinsic incubation period. The relationship between L3 output (measured as the mean number of successful larvae/fly or, as the proportion of flies with infective larvae) and average microfilarial intake, was strongly non-linear. This non-linearity was best represented by a sigmoid function in case of armed simuliids (S. ochraceum s.l., S. oyapockense s.l.), or by a hyperbolic expression in that of unarmed flies (S. damnosum s.l., S. guianense). These results are compatible, respectively, with the patterns of ‘initial facilitation’ and ‘limitation’ described in culicid vectors of lymphatic filariases. A maximum mean number of 1–3 L3/fly was observed in all 4 vectors. It is concluded that O. volvulus larval development to the infective stage is regulated by density-dependent mechanisms acting at the early phase of microfilarial migration out of the blackfly's bloodmeal. Damage by the bucco-pharyngeal armature may also be density dependent. A hypothesis, based on this density dependence is forwarded to explain initial facilitation, so far only recorded in vectors with well-developed cibarial teeth. Our results provide quantitative support for the conjecture that chemotherapy alone is likely to have a greater impact on reducing onchocerciasis transmission in endemic areas where the main vector has a toothed fore-gut than in foci where the vectors have unarmed cibaria.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alley, E. S., Agoua, H., Bissan, Y., Doucoure, K., Plaisier, A. P., Remme, J. H. F. & Qillévéré, D. (1994). Infectivity of Simulium damnosum s.s. and S. sirbanum in relation to intensity of onchocerciasis infection of the human host in Asubende, Ghana. Tropical Medicine and Parasitology (in the Press).Google Scholar
Anderson, R. M. (1980). The dynamics and control of direct life cycle helminth parasites. Lecture Notes in Biomathematics 39, 278322.CrossRefGoogle Scholar
Anderson, R. M. & Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85, 373–98.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1985). Helminth infections of humans: mathematical models, population dynamics, and control. Advances in Parasitology 24, 1101.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1991). Infectious Diseases of Humans. Dynamics and Control. Oxford: Oxford University Press.CrossRefGoogle Scholar
Armitage, P. & Berry, G. (1987). Statistical Methods in Medical Research. Oxford: Blackwell Scientific Publications.Google Scholar
Bain, O. (1971). Transmission des filarioses. Limitation des passages des microfilaires ingérées vers l'hémocèle du vecteur; interprétation. Annales de Parasitologie (Paris) 46, 613–31.Google ScholarPubMed
Bain, O. (1976). Traversée de la paroi stomacale du vecteur par les microfilaires: techniques d'étude utilisées, importance épidémiologique. Bulletin of the World Health Organization 54, 397401.Google Scholar
Bain, O. & Brengues, J. (1972). Transmission de la wuchereriose et de la sétariose bovine: étude histologique de la traversée de la paroi stomacale d' Anopheles gambiae A et d' Aedes aegypti par les microfilaires. Annales de Parasitologie (Paris) 47, 399412.Google Scholar
Bain, O., Durette-Desset, M. C. & De Léon, R. (1974). Onchocercose au Guatemala: l'ingestion des microfilaires par Simulium ochraceum et leur passage dans l'hémocéle de ce vecteur. Annales de Parasitologie (Paris) 49, 467–87.Google Scholar
Bain, O. & Philippon, B. (1969). Mécanisme du passage des microfilaires à travers la paroi stomacale du vecteur; son importance dans la transmission de l'onchocercose. Comptes Rendus de l 'Académie Scientifique de Paris 269, 1081–3.Google Scholar
Bain, O., Philippon, B., Sechan, Y. & Cassone, J. (1976). Corrélation entre le nombre de microfilaires ingérées et l'épaisseur de la membrane péritrophique du vecteur dans l'onchocercose de savane africaine. Comptes Rendus de l 'Académic Scientifique de Paris 283, 391–2.Google Scholar
Basáñez, M. G., Boussinesq, M., Prod'Hon, J., Frontado, H., Villamizar, N. J., Medley, G. F. & Anderson, R. M. (1994). Density-dependent processes in the transmission of human onchocerciasis: intensity of microfilariae in the skin and their uptake by the simuliid host. Parasitology 108, 115–27.CrossRefGoogle ScholarPubMed
Basáñez, M. G. & Yarzábal, L. (1989). Onchocerciasis in the Sierra Parima and Upper Orinoco regions, Federal Territory of Amazonas, Venezuela. In Parasitic Diseases: Treatment and Control (ed. Miller, M. J. & Love, E. J.), pp. 231–56. Boca Raton, FL: CRC Press.Google Scholar
Boussinesq, M. (1991). Etude épidémiologique de l'onchocercose en zone de savane camerounaise. Effets d'un traitement de masse par l'invermectine. Ph.D. thesis, University of Montpellier II.Google Scholar
Brengues, J. & Bain, O. (1972). Passage des microfilaires de l'estomac vers l'hémocèle du vector dans les couples Wuchereria bancrofti-Anopheles gambiae A, W. bancrofti-Aedes aegypti et Setaria labiatopapillosa-A. aegypti. Cahiers O.R.S.T.O.M. série Entomologie médicale et Parasitologie 10, 235–49.Google Scholar
Bryan, J. H., McMahon, P. & Barnes, A. (1990). Factors affecting transmission of Wuchereria bancrofti by anopheline mosquitoes. 3. Uptake and damage to ingested microfilariae by Anopheles gambiae, An. arabiensis, An. merus and An. funestus in East Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 265–8.CrossRefGoogle Scholar
Bryan, J. H. & Southgate, B. A. (1988). Factors affecting transmission of Wuchereria bancrofti by anopheline mosquitoes. 1. Uptake of microfilariae. Transactions of the Royal Society of Tropical Medicine and Hygiene 82, 128–37.CrossRefGoogle ScholarPubMed
Campbell, C. C., Collins, R. C., Huong, A. Y. & Figueroa-Marroquin, H. (1980). Quantitative aspects of the infection of Simulium ochraceum by Onchocerca volvulus: the relation of skin microfilarial density to vector infection. Tropenmedizin und Parasitologie 31, 475–8.Google ScholarPubMed
Chabaud, A., Bain, O., Landau, I. ' Petit, G. (1986). La transmission des parasites par vecteurs hématophages: richesse des phénomènes adaptatifs. La Vie des Sciences, Comptes rendus, série générale 3, 469–84.Google Scholar
Cheke, R. A., Garms, R. & Kerner, M. (1982). The fecundity of Simulium damnosum s.l. in northern Togo and infections with Onchocerca spp. Annals of Tropical Medicine and Parasitology 76, 561–8.CrossRefGoogle ScholarPubMed
Collins, R. C., Campbell, C. C., Wilton, D. P. & Newton, L. (1977). Quantitative aspects of the infection of Simulium ochraceum by Onchocerca volvulus. Tropenmedizin und Parasitologie 28, 235–43.Google ScholarPubMed
Coluzzi, M. & Trabucchi, R. (1968). Importanza dell' armatura bucco-faringea in Anopheles e Culex in relazione alle infezioni con Dirofilaria. Parassitologia 10, 4759.Google Scholar
Cox, D. R. & Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman and Hall.CrossRefGoogle Scholar
Cox, D. R. & Oakes, D. (1984). Analysis of Survival Data. London: Chapman and Hall.Google Scholar
Cupp, E. W. (1992). Treatment of onchocerciasis with Ivermectin in Central America. Parasitology Today 8,212–14.CrossRefGoogle ScholarPubMed
Curtis, C. F. & Graves, P. M. (1983). Genetic variation in the ability of insects to transmit filariae, trypanosomes and malarial parasites. Current Topics in Vector Research 1, 3162.Google Scholar
Davies, J. B. (1993). Description of a computer model of forest onchocerciasis transmission and its application to field scenarios of vector control and chemotherapy. Annals of Tropical Medicine and Parasitology 87, 4163.CrossRefGoogle ScholarPubMed
Davies, J. B., Weidhaas, D. E. & Haile, D. G. (1987). Models as aids to understanding onchocerciasis. In Black-flies: Ecology, Population Management and Annotated World List (ed. Kim, K. C. & Merrit, R. W.), pp. 396407. University Park and London: Pennsylvania State University.Google Scholar
de Léon, journal. & Duke, B. O. L. (1966). Experimental studies on the transmission of Guatemalan and West African strains of Onchocerca volvulus by Simulium ochraceum, S. metallicum and S. callidum. Transactions of the Royal Society of Tropical Medicine and Hygiene 60, 735–52.CrossRefGoogle Scholar
Denham, D. A. & McGreevy, P. B. (1977). Brugian filariasis: epidemiological and experimental studies. Advances in Parasitology 15, 243309.CrossRefGoogle ScholarPubMed
Dietz, K. (1982). The population dynamics of onchocerciasis. In Population Dynamics of Infectious Diseases (ed. Anderson, R. M.), pp. 209–41. London: Chapman and Hall.CrossRefGoogle Scholar
Dietz, K. (1988). Density-dependence in parasite transmission dynamics. Parasitology Today 4, 91–7.CrossRefGoogle ScholarPubMed
Duke, B. O. L. (1962 a). Studies on factors influencing the transmission of onchocerciasis. I. The survival rate of Simulium damnosum under laboratory conditions and the effect upon it of Onchocerca volvulus. Annals of Tropical Medicine and Parasitology 56, 130–5.CrossRefGoogle ScholarPubMed
Duke, B. O. L. (1962 b). Studies on factors influencing the transmission of onchocerciasis. II. The intake of Onchocerca volvulus microfilariae by Simulium damnosum and the survival of the parasites in the fly under laboratory conditions. Annals of Tropical Medicine and Parasitology 56, 255–63.CrossRefGoogle Scholar
Duke, B. O. L. (1966). Onchocerca-Simulium complexes. III. The survival of Simulium damnosum after high intakes of microfilariae of incompatible strains of Onchocerca volvulus and the survival of the parasite in the fly. Annals of Tropical Medicine and Parasitology 60, 495500.CrossRefGoogle Scholar
Duke, B. O. L. (1968). Studies on factors influencing the transmission of onchocerciasis. V. The stages of Onchocerca volvulus in wild ‘forest’ Simulium damnosum, the fate of the parasites in the fly, and the age-distribution of the biting population. Annals of Tropical Medicine and Parasitology 62, 107–16.CrossRefGoogle Scholar
Duke, B. O. L. (1973). Studies on factors influencing the transmission of onchocerciasis. VIII. The escape of infective Onchocerca volvulus larvae from feeding ‘forest’ Simulium damnosum. Annals of Tropical Medicine and Parasitology 67, 95–9.CrossRefGoogle Scholar
Duke, B. O. L. & Lewis, D. J. (1964). Studies on factors influencing the transmission of onchocerciasis. III. Observations on the effect of the peritrophic membrane in limiting the development on Onchocerca volvulus microfilariae in Simulium damnosum. Annals of Tropical Medicine and Parasitology 58, 83–8.CrossRefGoogle Scholar
Dye, C. (1992 a). The analysis of parasite transmission by bloodsucking insects. Annual Review of Entomology 37, 119.CrossRefGoogle ScholarPubMed
Dye, C. (1992 b). Does facilitation imply a threshold for the eradication of lymphatic filariasis ? Parasitology Today 8, 109–10.CrossRefGoogle ScholarPubMed
Dye, C. (1994). The epidemiological context of vector control. Transactions of the Royal Society of Tropical Medicine and Hygiene 88, 132–5.CrossRefGoogle ScholarPubMed
Dye, C. & Williams, B. G. (1994). Non-linearities in the dynamics of indirectly-transmitted infections (or, does having a vector make a difference?). In Ecology of Infectious Diseases in Natural Populations (ed. Dobson, A. & Grenfell, B. T.). Cambridge: Isaac Newton Institute for Mathematical Sciences (in the Press).Google Scholar
Eichner, M., Renz, A., Wahl, G. & Enyong, P. (1991). Development of Onchocerca volvulus microfilariae injected into Simulium species from Cameroon. Medical and Veterinary Entomology 5, 293–7.CrossRefGoogle ScholarPubMed
Figueroa, H., Collins, R. C. & Kozek, W. J. (1977). PoSt-prandial transportation and maintenance of Simulium ochraceum infected with Onchocerca volvulus. American Journal of Tropical Medicine and Hygiene 26, 75–9.CrossRefGoogle Scholar
Garms, R. & Cheke, R. A. (1985). Infections with Onchocerca volvulus in different members of the Simulium damnosum complex in Togo and Benin. Zeitschrift für angeviandte Zoologie 72, 479–95.Google Scholar
Guyatt, H. L., Bundy, D. A. P., Medley, G. F. & Grenfell, B. T. (1990). The relationship between the frequency distribution of Ascaris lumbricoides and the prevalence and intensity of infection in human communities. Parasitology 101, 139–43.CrossRefGoogle ScholarPubMed
Hairston, N. G. & De Meillon, B. (1968). On the inefficiency of transmission of Wuchereria bancrofti from mosquito to human host. Bulletin of the World Health Organization 38, 935–41.Google ScholarPubMed
Ham, P. J. (1986). Acquired resistance to Onchocerca lienalis infections in Simulium ornatum Meigen and Simulium lineatum Meigen following passive transfer of haemolymph from previously infected simuliids (Diptera, Simuliidae). Parasitology 92, 269–77.CrossRefGoogle ScholarPubMed
Ham, P. J. (1992). Immunity in haemotophagous insect vectors of parasitic infection. Advances in Disease Vector Research 9, 101–49.CrossRefGoogle Scholar
Ham, P. J. & Bianco, A. E. (1983). Screening of some British Simuliids for susceptibility to experimental Onchocerca lienalis infection. Zeitschrift für Parasitenkunde 69, 765–72.CrossRefGoogle ScholarPubMed
Ham, P. J. & Gale, C. L. (1984). Blood meal enhanced Onchocerca development and its correlation with fecundity in laboratory reared blackflies (Diptera, Simuliidae). Tropenmedizin und Parasitologie 35, 212–16.Google ScholarPubMed
Hassell, M. P., Lawton, J. H. & Beddington, J. R. (1977). Sigmoid functional responses by invertebrate predators and parasitoids. Journal of Animal Ecology 46, 249–62.CrossRefGoogle Scholar
Jordan, P. & Goatly, K. D. (1962). Bancroftian filariasis in Tanganyika: a quantitative study of the uptake, fate and development of microfilariae of Wuchereria bancrofti in Culex fatigans. Annals of Tropical Medicine and Parasitology 56, 173–87.CrossRefGoogle Scholar
Laurence, B. R. (1966). Intake and migration of the microfilariae of Onchocerca volvulus (Leuckart) in Simulium damnosum Theobald. Journal of Helminthology 40, 337–42.CrossRefGoogle ScholarPubMed
Lewis, D. J. (1950). A peritrophic membrane in Simulium. Nature, London 165, 978.CrossRefGoogle ScholarPubMed
Lewis, D. J. (1953). Simulium damnosum and its relation to onchocerciasis in the Anglo-Egyptian Sudan. Bulletin of Entomological Research 43, 597644.CrossRefGoogle Scholar
Lok, J. B., Cupp, E. W., Braide, E. I. & Bernardo, M. J. (1980). The development of Onchocerca spp. in Simulium decorum Walker and Simulium pictipesHagen. Tropenmedizin und Parasitologie 31, 498506.Google Scholar
Macdonald, G. (1965). The dynamics of helminth infections, with special reference to schistosomes. Transactions of the Royal Society of Tropical Medicine and Hygiene 59, 489506.CrossRefGoogle ScholarPubMed
May, R. M. (1977). Togetherness among schistosomes: its effects on the dynamics of the infection. Mathematical Biosciences 35, 301–43.CrossRefGoogle Scholar
McGreevy, P. B., Bryan, J. H., Oothuman, P. & Kolstrup, N. (1978). On the lethal effects of the cibarial and pharyngeal armatures of mosquitoes on microfilariae. Transactions of the Royal Society of Tropical Medicine and Hygiene 72, 361–8.CrossRefGoogle ScholarPubMed
Miller, N. & Lehane, M. J. (1993). Petritrophic membranes, cell surface molecules and parasite tropisms within arthropods. Parasitology Today 9, 4550.CrossRefGoogle Scholar
Obiamiwe, B. A. (1977). Relationship between microfilarial density, the number of microfilariae ingested by mosquitoes and the proportion of mosquitoes with larvae. Annals of Tropical Medicine and Parasitology 71, 491500.CrossRefGoogle ScholarPubMed
Omar, M. S. & Garms, R. (1975). The fate and migration of microfilariae of a Guatemalan strain of Onchocerca volvulus in Simulium ochraceum and S. metallicum, and the role of the buccopharyneal armature in the destruction of microfilariae. Tropenmedizin und Parasitologie 26, 183–90.Google ScholarPubMed
Omar, M. S. & Garms, R. (1977). Lethal damage to Simulium metallicum following high intakes of Onchocerca volvulus microfilariae in Guatemala. Tropenmedizin und Parasitologie 28, 109–19.Google ScholarPubMed
Philippon, B. (1977). Etude de la transmission d'Onchocerca volvulus (Leuckart, 1893) (Nematoda, Onchocercidae) par Simulium damnosum Theobald, 1903 (Diptera, Simuliidae) en Afrique tropicale. Travaux et Documents de l' O.R.S.T.O.M. (Paris) No. 63.Google Scholar
Phiri, J. & Ham, P. J. (1990). Enhanced migration of Brugia pahangi microfilariae through the mosquito midgut following N-acetyl-D-glucosamine ingestion. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 462.Google Scholar
Pichon, G. (1974). Relations mathématiques entre le nombre des microfilaires ingérées et le nombre des parasites chez différents vecteurs naturelles ou expérimentaux de filarioses. Cahiers O.R.S.T.O.M. série Entomologie médicate et Parasitologie 12, 199216.Google Scholar
Pichon, G., Perrault, G. & Laigret, J. (1974). Rendement parasitaire chez les vecteurs de filarioses. Bulletin of the World Health Organization 51, 517–24.Google Scholar
Plaisier, A. P., van Oortmarssen, G. J., Habbema, J. D. F., Remme, J. & Alley, E. S. (1990). ONCHOSIM: 3 model and computer simulation program for the transmission and control of onchocerciasis. Computer Methods and Programs in Biomedicine 31, 4356.CrossRefGoogle Scholar
Plaisier, A. P., van Oortmarssen, G. J., Remme, J., Alley, E. S., & Habbema, J. D. F. (1991). The risk and dynamics of onchocerciasis recrudescence after cessation of vector control. Bulletin of the World Health Organization 69, 169–78.Google ScholarPubMed
Prod'Hon, J., Pichon, G., Rivière, F., De Jardin, J., Géry, M., Doué, F., Faugére, C. & Verneuil, M. P. (1980). étude quantitative de la réduction parasitaire stomacale chez les vecteurs de filarioses. Cahiers O.R.S.T.O.M. série Entomologie médicale et Parasitologie 18, 1325.Google Scholar
Reid, G. D. F. (1978). Cibarial armature of Simulium vectors of onchocerciasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 72, 438.Google Scholar
Reid, G. D. F. (1994). Structure and function of the cibarial armature in Simuliidae. Medical and Veterinary Entomology 8, 295301.CrossRefGoogle ScholarPubMed
Reid, G. D. F. & Lehane, M. J. (1984). Peritrophic membrane formation in three temperate simuliids, Simulium ornatum, S. equinum and S. lineatum, with respect to the migration of onchocercal microfilariae. Annals of Tropical Medicine and Parasitology 78, 527–39.CrossRefGoogle Scholar
Remme, J., de Sole, G., Dadzie, K. Y., Alley, E. S., Baker, R. H. A., Habbema, J. D. F., Plaisier, A. P., van Oortmarssen, G. J. & Samba, E. M. (1990). Large scale ivermectin distribution and its epidemiological consequences. Acta Leidensia 59, 177–91.Google ScholarPubMed
Renz, A. (1987). Studies on the dynamics of transmission of onchocerciasis in a Sudan-savanna area of North Cameroon. III. Infection rates of the Simulium vectors and Onchocerca volvulus transmission potentials. Annals of Tropical Medicine and Parasitology 81, 239–52.CrossRefGoogle Scholar
Rosen, L. (1955). Observations on the epidemiology of human filariasis in French Oceania. American Journal of Hygiene 61, 219–48.Google Scholar
Shelley, A. J. (1988). Vector aspects of the epidemiology of onchocerciasis in Latin America. Annual Review of Entomology 30, 337–66.CrossRefGoogle Scholar
Shelley, A. J. (1991). Simuliidae and the transmission and control of human onchocerciasis in Latin America. Cadernos de Saúde Pública, RJ 7, 310–27.CrossRefGoogle ScholarPubMed
Shelley, A. J. (1994). Factors affecting filarial transmission by simuliids. Advances in Disease Vector Research 10, 183214.CrossRefGoogle Scholar
Shelley, A. J., Luna, Dias A. P. A., Moraes, M. A. P. & Procunier, W. S. (1987). The status of Simulium oyapockense and S. limbatum as vectors of human onchocerciasis in Brazilian Amazonia. Medical and Veterinary Entomology 1, 219–34.CrossRefGoogle ScholarPubMed
Sokal, R. R. & Rohlf, F. J. (1981). Biometry. The Principles and Practice of Statistics in Biological Research. New York: W. H. Freeman and Company.Google Scholar
Southgate, B. A. & Bryan, J. H. (1992). Factors affecting transmission of Wuchereria bancrofti by anopheline mosquitoes. 4. Facilitation, limitation, proportionality and their epidemiological significance. Transactions of the Royal Society of Tropical Medicine and Hygiene 86, 523–30.CrossRefGoogle ScholarPubMed
Spielman, A. & Rossignol, P. A. (1985). Insect vectors. In Tropical and Geographical Medicine (ed. Mahumoud, A. & Warren, K.), pp. 172–5. Singapore: McGraw Hill International Student Edition.Google Scholar
Takaoka, H., Ochoa, J. O., Juarez, E. L. & Hansen, K. M. (1982). Effects of temperature on development of Onchocerca volvulus in Simulium ochraceum, and longevity of the simuliid vector. Journal of Parasitology 68, 478–83.CrossRefGoogle ScholarPubMed
Takaoka, H., Suzuki, H., Noda, S., Ochoa, J. O. & Tada, I. (1984 a). The intake, migration and development of Onchocerca volvulus microfilariae in Simulium haematopotum in Guatemala. Japanese Journal of Sanitary Zoology 35, 121–7.Google Scholar
Takaoka, H., Suzuki, H., Noda, S., Tada, I., Basáñez, M. G. & Yarzábal, L. (1984 b). Development of Onchocerca volvulus larvae in Simulium pintoi in the Amazonas region of Venezuela. American Journal of Tropical Medicine and Hygiene 33, 414–19.CrossRefGoogle ScholarPubMed
Townson, H. & Chaithong, U. (1991). Mosquito host influences on development of filariae. Annals of Tropical Medicine and Parasitology 85, 149–63.CrossRefGoogle ScholarPubMed
Webber, R. H. (1991). Can anopheline-transmitted filariasis be eradicated ? Journal of Tropical Medicine and Hygiene 94, 241–4.Google ScholarPubMed
Wenk, P. (1991). The vector host link in filariasis. Annals of Tropical Medicine and Parasitology 85, 139–47.CrossRefGoogle ScholarPubMed
Wharton, R. H. (1957 a). Studies on filariasis in Malaya: observations on the development of Wuchereria malayi in Mansonia (Mansonioides) longipalpis. Annals of Tropical Medicine and Parasitology 51, 278–96.CrossRefGoogle ScholarPubMed
Wharton, R. H. (1957 b). Studies on filariasis in Malaya: the efficiency of Mansonia longipalpis as an experimental vector of Wuchereria malayi. Annals of Tropical Medicine and Parasitology 51, 422–39.CrossRefGoogle ScholarPubMed