Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T19:57:19.216Z Has data issue: false hasContentIssue false

Cytology and Kinetics of microgametogenesis and fertilization in Plasmodium yoelii nigeriensis

Published online by Cambridge University Press:  06 April 2009

R. E. Sinden
Affiliation:
Department of Zoology and Applied Entomology, Imperial College, London S.W.7
N. A. Croll
Affiliation:
Department of Zoology and Applied Entomology, Imperial College, London S.W.7

Extract

The sexual development of the microgametocyte of Plasmodium yoelii nigeriensis may be subdivided into microgametogenesis which includes exflagellation, dispersal of the gametes and fertilization. Under our experimental conditions microgametogenesis takes about 8–15 min at 20 °C, the duration of this period being inversely related to temperature. Exflagellation takes less than 1 min, subsequent dispersal of gametes may continue for 40 min. We find that exflagellation is totally inhibited in vitro by temperatures of 30 °C and above, and by certain invertebrate tissue culture media. Exflagellation may occur within a persistent host cell plasmalemma, which seriously impedes the escape of the 8 microgametes. Microgametes move by sinusoidal or helical waves which may be rapid (10 waves/s), slow (< 1 wave/s) or they may be immobile. Microgamete activity, which is alternately rapid/slow or slow/immobile, declines linearly with time. Fertilization which takes less than 1 min results from characteristic behavioural changes by the microgamete; vibratory waves are responsible for the penetration of the macrogamete by the microgamete. The microgamete completely enters the macrogamete and therein continues its cyclical activity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, G. H., & Chao, J., (1960). In vitro development of the mosquito phase of Plasmodium relictum. Experimented Parasitology 9, 4755.CrossRefGoogle ScholarPubMed
Bano, L., (1958). Sporogony of different species of Plasmodium under natural and artificial conditions. Ph.D. Thesis, University of London.Google Scholar
Bishop, A., & McConnachie, E. W., (1956). A study of the factors affecting the emergence of the gametocytes of Plasmodium gallinaceum from the erythrocytes and the exflagellation of the male gametocytes. Parasitology 46, 192215.CrossRefGoogle ScholarPubMed
Bishop, D. W., & Hoffmann-Berling, H., (1959). Extracted mammalian sperm models. 1. Preparation and reactivation with adenosine triphosphate. Journal of Cellular and Comparative Physiology 53, 445–66.CrossRefGoogle Scholar
Bradbury, P. C., & Trager, W., (1968). The fine structure of the mature gametes of Haemoproteus columbae Kruse. Journal of Protozoology 15, 89102.CrossRefGoogle ScholarPubMed
Chorine, V., (1933). Conditions qui régissent la fécondation de Plasmodium praecox. Archives de L'Institut Pasteur d'Algérie 11, 18.Google Scholar
Claus, A., (1903). Über den Einfluss physikalischer Reize auf die Bildung den Geschlectszellen bei Hämoproteus. Hygienisehe Rundshau 13, 283–8.Google Scholar
Danilewsky, B., (1889). La parasitologie comparée du sang. 1. Nouvelles recherches sur les parasites du sang des oiseaux. Kharkoff.Google Scholar
Ferguson, M. S., Wolcott, G. B., & Young, M. D., (1954). Mosquito stages of Plasmodium falciparum Film. No. CDC M 138b. Centre for Disease Control, Atlanta, Georgia 30333.Google Scholar
Freyvogel, T. A., (1965). The movement of plasmodial ookinetes. Progress in Protozoology, p. 107. International Congress Series No. 91. Amsterdam: Excerpta Medica Foundation.Google Scholar
Freyvogel, T. A., (1966). Shape, movement in situ and locomotion of plasmodial ookinetes. Acta Tropica 23, 201–22.Google ScholarPubMed
Garnham, P. C. C., (1965). The structure of the early sporogonic stages of Plasmodium berghei. Annales de la Societé beige de médicine tropicale 45, 259–66.Google Scholar
Garnham, P. C. C., (1966). Locomotion in the parasitic protozoa. Biological Reviews 41, 561–86.Google Scholar
Garnham, P. C. C., Bird, R. G., & Baker, J., (1967). Electron microscope studies of the motile stages of malaria parasites. V. Exflagellation in Plasmodium, Hepatocystis and Leucocytozoon. Transactions of the Royal Society of Tropical Medicine and Hygiene 61, 5868.Google Scholar
Gray, J., (1958). The movement of the spermatozoa of the bull. Journal of Experimental Biology 35, 96108.CrossRefGoogle Scholar
Jahn, T. L., & Bovee, E. C., (1968). Locomotions in blood protists. Infectious Blood Diseases of Man and Animals caused by Blood Protista (ed. Weinmann, D., and Ristic, M.,) vol. 1, pp. 393436. London and New York: Academic Press.Google Scholar
Killick-Kendrick, R., (1973). Parasitic protozoa of the blood of rodents. I. The life cycle and zoogeography of Plasmodium berghei nigeriensis subsp. nov., Annals of Tropical Medicine and Parasitology 67, 261–77.CrossRefGoogle ScholarPubMed
Killick-Kendrick, R., (1974). Parasitic protozoa of the blood of rodents. II. Haemogregarines, malaria parasites and piroplasms of rodents: an annotated checklist and host-index. Acta tropica 31, 2869.Google ScholarPubMed
Kliger, I. J., & Mer, G., (1937). Studies on the effect of various factors on the infection rate of Anopheles elutus with different species of Plasmodium. Annals of Tropical Medicine and Parasitology 31, 7183.Google Scholar
Laveran, A., (1881). Description d'un nouveau parasite découvert dans le sang des malades attients d'impaludisme. Comptes Rendues des Séances de l'Academié des Sciences, Paris 93, 627–30.Google Scholar
MacCallum, W. G., (1897). On the flagellated form of the malarial parasite. Lancet 11, 1240–1.CrossRefGoogle Scholar
MacCallum, W. G., (1898). On the haematozoan infections of birds. Journal of Experimental Medicine 3, 117–36.CrossRefGoogle ScholarPubMed
Marchoux, E., & Chorine, V., (1932). La fécondation des gamètes d'hématozoaires. Annales de L'Institut Pasteur 49, 75102.Google Scholar
Micks, D. W., De Caires, P. F., & Franco, L. B., (1948). The relationship of exflagellation in avian plasmodia to pH and immunity in the mosquito. American Journal of Hygiene 48, 182–90.Google Scholar
Raffaele, G., (1939). Sulla struttura dei gameti masehili dei plasmodidi. Rivista di Malariologia 18, 141–53.Google Scholar
Roller, N. R., & Desser, S. S., (1973). The effect of temperature, age and density of gametocytes, and changes in gas composition on exflagellation in Leucocytozoon simondi. Canadian Journal of Zoology 51, 577–87.Google Scholar
Ross, R., (1897). Observations on a condition necessary to the transformation of the malaria crescent. British Medical Journal 1, 251–5.Google Scholar
Schaudinn, F., (1902). Studien über krankheitserregende Protozoen II. Plasmodium vivax (Grassi & Feletii), der Erreger des Tertianfiebers bein Menschen. Arbeiten aus den k. Geshundheitsamte 18/19, 225–43.Google Scholar
Singh, K. R. P., (1967). Cell cultures derived from larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.), Current Science 36, 506–8.Google Scholar
Taylor, G., (1951). Analysis of the swimming of microscopic organisms. Proceedings of the Royal Society A 209, 447–61.Google Scholar
Yoeli, M., & Upmanis, R. S., (1968). Plasmodium berghei ookinete formation in vitro. Experimental Parasitology 22, 122–8.CrossRefGoogle ScholarPubMed
Yunker, C. E., Vaughn, J. L., & Cory, J., (1967). Adaptation of an insect cell line (Grace's Antheraea cells) to medium free of insect haemolymph. Science 155, 1565–6.Google Scholar