Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T17:25:24.591Z Has data issue: false hasContentIssue false

Cytokine and immunoglobulin subclass responses of rats to infection with Eimeria nieschulzi

Published online by Cambridge University Press:  06 April 2009

N. C. Smith
Affiliation:
Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland
K. S. Ovington
Affiliation:
Division of Biochemistry and Molecular Biology, School of Life Sciences, Australian National University, Canberra, A.C.T. 0200, Australia
P. Deplazes
Affiliation:
Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland
J. Eckert
Affiliation:
Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland

Summary

SIV rats infected with a high dose (50000 oocysts) of Eimeria nieschulzi displayed clinical symptoms of coccidiosis such as diarrhoea (days 6 and 7 post-primary infection) and weight loss (days 6–8 post-primary infection) and were completely immune to challenge with a similar dose. The ability of rats to produce tumour necrosis factor (TNF) in vivo was enhanced during the period of oocyst excretion in the primary infection but significant production of TNF did not occur after challenge infection. Thus, TNF does not appear to be an important factor in resistance to infection with E. nieschulzi but may play some role in resistance to primary infection and in the pathology associated with E. nieschulzi infection. Parasite-specific serum IgM levels (measured by enzyme-linked immunosorbent assay) were also increased during primary infection but returned to background levels at the end of the patent period and were not affected by challenge infection. In contrast to TNF and IgM, serum concentrations of E. nieschulzi-specific IgGl, IgG2a, IgG2b, IgG2c and intestinal tissue levels of IgA did not begin to increase until after day 12 post-primary infection, reached peak levels between days 20 and 30 post-primary infection and were slightly increased by challenge infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Byrnes, S., Eaton, R. & Kogut, M. (1993). In vitro interleukin-1 and tumor necrosis factor-alpha production by macrophages from chickens infected with either Eimeria maxima or Eimeria tenella. International Journal for Parasitology 23, 639–45.CrossRefGoogle ScholarPubMed
Clark, I. A. & Chaudri, G. (1988). Tumour necrosis factor in malaria-induced abortion. American Journal of Tropical Medicine and Hygiene 39, 246–9.Google Scholar
Else, K. J. & Grencis, R. K. (1991). Helper T cell subsets in mouse trichuriasis. Parasitology Today 7, 313–16.CrossRefGoogle ScholarPubMed
Ferguson, A. & Jarrett, E. E. E. (1975). Hypersensitivity reactions in the small intestine. 1. Thymus dependence of experimental ‘partial villous atrophy’. Gut 16, 114–20.CrossRefGoogle Scholar
Grau, G. E., Fajardo, L. F., Piguet, P.-F., Allet, B., Lambert, P.-H. & Vassalli, P. (1987). Tumour necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 237, 1210–12.Google Scholar
Grau, G. E., Taylor, T. E., Molyneux, M. E., Wirima, J. J., Vassalli, P., Hommel, M. & Lambert, P.-H. (1989). Tumour necrosis factor and disease severity in children with falciparum malaria. New England Journal of Medicine 320, 1586–91.CrossRefGoogle ScholarPubMed
Kwiatkowski, D., Hill, A. V. S., Sambou, I., Twumasi, P., Castracane, J., Manogue, K. R., Cerami, A., Brewster, D. R. & Greenwood, B. M. (1990). TNF concentration in fatal cerebral, non-fatal cerebral and uncomplicated Plasmodium falciparum malaria. Lancet 336, 1201–4.CrossRefGoogle ScholarPubMed
Lillehoj, H. S. & Trout, J. M. (1994). CD8 + T cell-coccidia interactions. Parasitology Today 10, 1014.Google Scholar
Mosmann, T. R. & Coffman, R. L. (1989). TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annual Review of Immunology 7, 145–74.CrossRefGoogle ScholarPubMed
Mosmann, T. R. & Moore, K. W. (1991). The role of IL- 10 in cross-regulation of TH1 and TH2 responses. Parasitology Today 7, A49–A53.Google Scholar
Ovington, K. S. (1987). Nippostrongylus brasiliensis: physiological and metabolic responses of rats to primary infection. Experimental Parasitology 63, 1020.Google Scholar
Reed, S. G. & Scott, P. (1993). T cell and cytokine responses in leishmaniasis. Current Opinion in Immunology 5, 524–31.CrossRefGoogle ScholarPubMed
Rose, M. E. (1987). Eimeria, Isospora and Cryptosporidium. In Immune Responses in Parasitic Infections: Immunology, Immunopathology and Immunoprophylaxis (ed. Soulsby, E. J. L.), pp. 275312. Boca Raton, Florida, USA: CRC Press Inc.Google Scholar
Rose, M. E. & Hesketh, P. (1982). Coccidiosis: T lymphocyte dependent effects of infection with Eimeria nieschulzi in rats. Veterinary Immunology and Immunopathology 3, 499505.CrossRefGoogle ScholarPubMed
Rose, M. E., Ogilvie, B. M., Hesketh, P. & Festing, M. F. W. (1979). Failure of nude (athymic) rats to become resistant to re-infection with the intestinal coccidian parasite Eimeria nieschulzi or the nematode Nippostrongylus brasiliensis. Parasite Immunology 1, 125–32.Google Scholar
Rose, M. E., Peppard, J. V. & Hobbs, S. M. (1984). Coccidiosis: characterisation of antibody responses to infection with Eimeria nieschulzi. Parasite Immunology 6, 112.CrossRefGoogle ScholarPubMed
Rose, M. E. & Wakelin, D. (1989). Mechanisms of immunity to Coccidiosis. In Coccidia and Intestinal Coccidiomorphs (ed Yvore, P.), pp. 527540. France: INRA Publications.Google Scholar
Rose, M. E., Wakelin, D. & Hesketh, P. (1989). Gamma interferon controls Eimeria vermiformis primary infection in BALB/c mice. Infection and Immunity 57, 1599–603.CrossRefGoogle ScholarPubMed
Rose, M. E., Wakelin, D. & Hesketh, P. (1991). Interferon gamma mediated effects upon immunity to coccidiosis infections in the mouse. Parasite Immunology 13, 6374.CrossRefGoogle ScholarPubMed
Scuderi, P., Lam, K. S., Ryan, K. J., Petersen, E., Sterling, K. E., Finley, P. R., Ray, C. G., Slymen, D. J. & Salmon, S. E. (1986). Raised serum levels of tumour necrosis factor in parasitic infections. Lancet ii, 1364–5.CrossRefGoogle Scholar
Slade, S. J. & Langhorne, J. (1989). Production of interferon gamma during infection of mice with Plasmodium chabaudi chabaudi. Immunobiology 179, 353–65.Google Scholar
Smith, N. C., Bucklar, H., Muggli, E., Hoop, R. K., Gottstein, B. & Eckert, J. (1993). Use of IgG- and IgM-specific ELISAs for the assessment of exposure status of chickens to Eimeria species. Veterinary Parasitology 51, 1325.CrossRefGoogle ScholarPubMed
Smith, N. C. & Ovington, K. S. (1994). Nippostrongylus brasiliensis: ability of plasma to prime free radical generation by leukocytes in response to adult worms not due to γ-interferon or tumour necrosis factor. International Journal for Parasitology 24, 959–66.Google Scholar
Smith, N. C., Ovington, K. S. & Bryant, C. (1991). Free radical generation and the course of primary infection with Nippostrongylus brasiliensis in congenitally athymic (nude) rats. Parasite Immunology 13, 571–81.Google Scholar
Snapper, C. M. & Mono, J. J. (1993). Towards a comprehensive view of immunoglobulin class switching. Immunology Today 14, 1517.Google Scholar
Uchikawa, R., Yamada, M., Matsuda, S., Kuroda, A. & Arizono, N. (1994). IgE antibody production is associated with suppressed interferon-γ levels in mesenteric lymph nodes of rats infected with the nematode Nippostrongylus brasiliensis. Immunology 82, 427–32.Google Scholar
Wakelin, D. & Rose, M. E. (1990). Immunity to coccidiosis. In Coccidiosis of Man and Domestic Animals (ed. Long, P. L.), pp. 281306. Boca Raton, Florida, USA: CRC Press Inc.Google Scholar
Wakelin, D., Rose, M. E., Hesketh, P., Else, K. J. & Grencis, R. K. (1993). Immunity to coccidiosis: genetic influences on lymphocyte and cytokine responses to infection with Eimeria vermiformis in inbred mice. Parasite Immunology 15, 1119.CrossRefGoogle ScholarPubMed
Yamada, M., Ntakazawa, M. & Arizono, N. (1993). IgE and IgG2a antibody responses are induced by different antigen groups of the nematode Nippostrongylus brasiliensis in rats. Immunology 78, 298302.Google Scholar