Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T22:11:25.388Z Has data issue: false hasContentIssue false

Cysteine peptidases in Herpetomonas samuelpessoai are modulated by temperature and dimethylsulfoxide-triggered differentiation

Published online by Cambridge University Press:  07 January 2009

F. M. Pereira
Affiliation:
Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
C. G. R. Elias
Affiliation:
Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
C. M. d'Avila-Levy
Affiliation:
Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
M. H. Branquinha
Affiliation:
Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
A. L. S. Santos*
Affiliation:
Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
*
*Corresponding author: Laboratório de Estudos Integrados em Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Bloco I-subsolo, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ21941-902, Brazil. Tel: +55 21 2562 6740. Fax: +55 21 2560 8344. E-mail: [email protected]

Summary

Cysteine peptidases of protozoa have been implicated in a variety of biological events, and the expression of these enzymes is modulated in response to distinct stimuli, including environmental changes and differentiation. In the present work, we have examined the expression of cysteine peptidases from Herpetomonas samuelpessoai grown at distinct temperatures and during dimethylsulfoxide (DMSO)-elicited differentiation. We demonstrated that a 45 kDa cysteine peptidase had its activity reduced during the parasite growth at 37°C in comparison to 26°C, and when cultured up to 72 h in the presence of DMSO. The modulation in the 45 kDa cysteine peptidase expression is connected to the differentiation process, since both temperature and DMSO are able to trigger the promastigote to paramastigote transformation in H. samuelpessoai. The possible immunological similarity of H. samuelpessoai proteins with well-known cysteine peptidases produced by trypanosomatid pathogens, including cruzipain (Trypanosoma cruzi) and cysteine peptidase b (cpb) from Leishmania mexicana, was also investigated, as well as with calpain molecules. The protein cellular lysate of H. samuelpessoai reacted with antibodies raised against cpb of L. mexicana and calpain of Drosophila melanogaster; however, no reaction was observed against cruzipain. The 35 kDa cpb-like protein had its expression diminished in DMSO-treated parasites, while the 80 kDa calpain-like molecule was enhanced and an additional 30 kDa calpain-related polypeptide was exclusively observed in these cells. Fluorescence microscopy and flow cytometry analyses corroborated these data. The results described above add H. samuelpessoai to the list of parasites whose differentiation seems to be correlated with cysteine peptidase expression.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angluster, J., Bunn, M. M. and De Souza, W. (1977). Effect of 2-deoxy-d-glucose on differentiation of Herpetomonas samuelpessoai. Journal of Parasitology 63, 922924.CrossRefGoogle ScholarPubMed
Bhattacharya, J., Dey, R. and Datta, S. C. (1993). Calcium dependent thiol protease caldonopain and its specific endogenous inhibitor in Leishmania donovani. Molecular and Cellular Biochemistry 126, 916.CrossRefGoogle ScholarPubMed
Castellanos, G. B., Angluster, J. and De Souza, W. (1981). Induction of differentiation in Herpetomonas samuelpessoai by dimethylsulfoxide. Acta Tropica 38, 2937.Google ScholarPubMed
d'Avila-Levy, C. M., Souza, R. F., Gomes, R. C., Vermelho, A. B. and Branquinha, M. H. (2003). A novel extracellular cysteine proteinase from Crithidia deanei. Archives of Biochemistry and Biophysics 420, 18.CrossRefGoogle ScholarPubMed
d'Avila-Levy, C. M., Araújo, F. M., Vermelho, A. B., Soares, R. M. A., Santos, A. L. S. and Branquinha, M. H. (2005). Proteolytic expression in Blastocrithidia culicis: influence of the endosymbiont and similarities with virulence factors of pathogenic trypanosomatids. Parasitology 130, 413420.CrossRefGoogle ScholarPubMed
d'Avila-Levy, C. M., Marinho, F. A., Santos, L. O., Martins, J. L., Santos, A. L. S. and Branquinha, M. H. (2006). Antileishmanial activity of MDL 28170, a potent calpain inhibitor. International Journal of Antimicrobial Agents 28, 138142.CrossRefGoogle ScholarPubMed
Elias, C. G. R., Pereira, F. M., Silva, B. A., Alviano, C. S., Soares, R. M. A. and Santos, A. L. S. (2006). Leishmanolysin (gp63 metallopeptidase)-like activity extracellularly released by Herpetomonas samuelpessoai. Parasitology 132, 3747.CrossRefGoogle ScholarPubMed
Gil-Parrado, S., Popp, O., Knoch, T. A., Zahler, S., Bestvater, F., Felgentrager, M., Holloschi, A., Fernandez-Montalvan, A., Auerswald, E. A., Fritz, H., Fuentes-Prior, P., Machleidt, W. and Spiess, E. (2003). Subcellular localization and in vivo subunit interactions of ubiquitous mu-calpain. The Journal of Biological Chemistry 278, 1633616446.CrossRefGoogle ScholarPubMed
Goll, D. E., Thompson, V. F., Li, H., Wei, W. and Cong, J. (2003). The calpain system. Physiology Reviews 83, 731801.CrossRefGoogle ScholarPubMed
Liu, X., van Vleet, T. and Schnellmann, R. G. (2004). The role of calpain in oncotic cell death. Annual Review of Pharmacology and Toxicology 44, 349370.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
McGhee, R. B. and Cosgrove, W. B. (1980). Biology and physiology of the lower Trypanosomatidae. Microbiology Reviews 44, 140173.CrossRefGoogle ScholarPubMed
Mehendale, H. M. and Limaye, P. B. (2005). Calpain: a death protein that mediates progression of liver injury. Trends in Pharmacology Science 26, 232236.CrossRefGoogle ScholarPubMed
Nakamura, C. V. and Pinto, A. S. (1989). Biological effects of lithium chloride on the insect trypanosomatid Herpetomonas samuelpessoai. Parasitology 99, 193197.CrossRefGoogle ScholarPubMed
Parsons, M. and Ruben, L. (2000). Pathways involved in environmental sensing in trypanosomatids. Parasitology Today 16, 5662.CrossRefGoogle ScholarPubMed
Roitman, C., Roitman, I. and Azevedo, H. P. (1972). Growth of an insect trypanosomatid at 37°C in a defined medium. The Journal of Protozoology 19, 346349.CrossRefGoogle Scholar
Roitman, I., Brener, Z., Roitman, C. and Kitajima, E. W. (1976). Demonstration that Leptomonas pessoai Galvão, Oliveira & Veiga, 1970, is a Herpetomonas. The Journal of Protozoology 23, 291293.CrossRefGoogle Scholar
Sajid, M. and McKerrow, J. H. (2002). Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology 120, 121.CrossRefGoogle ScholarPubMed
Santos, A. L. S., Abreu, C. M., Alviano, C. S. and Soares, R. M. A. (2002 c). Activation of the glycosylphosphatidylinositol-anchored membrane proteinase upon release from Herpetomonas samuelpessoai by phospholipase C. Current Microbiology 45, 293298.CrossRefGoogle ScholarPubMed
Santos, A. L. S., Batista, L. M., Abreu, C. M., Alviano, C. S., Angluster, J. and Soares, R. M. A. (2001). Developmentally regulated protein expression mediated by dimethylsulfoxide in Herpetomonas samuelpessoai. Current Microbiology 42, 111116.CrossRefGoogle ScholarPubMed
Santos, A. L. S., Branquinha, M. H. and d'Avila-Levy, C. M. (2006 b). The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function. Anais da Academia Brasileira de Ciências 78, 687714.CrossRefGoogle ScholarPubMed
Santos, A. L. S., d'Avila-Levy, C. M., Dias, F. A., Ribeiro, R. O., Pereira, F. M., Elias, C. G. R., Souto-Padrón, T., Lopes, A. H. C. S., Alviano, C. S., Branquinha, M. H. and Soares, R. M. A. (2006 a). Phytomonas serpens: cysteine peptidase inhibitors interfere with growth, ultrastructure and host adhesion. International Journal for Parasitology 36, 4756.CrossRefGoogle ScholarPubMed
Santos, A. L. S., d'Avila-Levy, C. M., Elias, C. G. R., Vermelho, A. B. and Branquinha, M. H. (2007 a). Phytomonas serpens: immunological similarities with the human trypanosomatid pathogens. Microbes and Infection 9, 915921.CrossRefGoogle ScholarPubMed
Santos, N. C., Figueira-Coelho, J., Martins-Silva, J. and Saldanha, C. (2003 b). Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochemical Pharmacology 65, 10351041.CrossRefGoogle ScholarPubMed
Santos, A. L. S., Rodrigues, M. L., Alviano, C. S., Angluster, J. and Soares, R. M. A. (2003 a). Herpetomonas samuelpessoai: dimethylsulfoxide-induced differentiation is influenced by proteinase expression. Current Microbiology 46, 1117.CrossRefGoogle Scholar
Santos, A. L. S., Rodrigues, M. L., Alviano, C. S. and Soares, R. M. A. (2002 a). Changes of sialomolecules during the dimethylsulfoxide-induced differentiation of Herpetomonas samuelpessoai. Parasitology Research 88, 951955.CrossRefGoogle ScholarPubMed
Santos, A. L. S. and Soares, R. M. A. (2007 b). Effect of sphingosine and PMA on the growth and dimethylsulfoxide-induced differentiation in the insect trypanosomatid Herpetomonas samuelpessoai. Memórias do Instituto Oswaldo Cruz 102, 601604.CrossRefGoogle ScholarPubMed
Santos, A. L. S., Souto-Padron, T., Alviano, C. S., Lopes, A. H. C. S., Soares, R. M. A. and Meyer-Fernandes, J. R. (2002 b). Secreted phosphatase activity induced by dimethyl sulfoxide in Herpetomonas samuelpessoai. Archives of Biochemistry and Biophysics 405, 191198.CrossRefGoogle ScholarPubMed
Soares, R. M. A., Alviano, C. S., Esteves, M. J. G., Angluster, J., Silva-Filho, F. C. and De Souza, W. (1988). Changes in cell surface anionogenic groups during differentiation of Herpetomonas samuelpessoai mediated by dimethylsulfoxide. Cell Biophysics 13, 2941.CrossRefGoogle Scholar
Soares, R. M. A., Alviano, C. S., Silva-Filho, F. C., Esteves, M. J. G., Angluster, J. and De Souza, W. (1984). Effect of dimethylsulfoxide on the cell surface of Herpetomonas samuelpessoai. Journal of Submicroscopy Cytology 16, 735739.Google ScholarPubMed
Sorimachi, H. S., Ishiura, S. and Suzuki, K. (1997). Structure and physiological function of calpains. Biochemistry Journal 328, 721732.CrossRefGoogle ScholarPubMed
Souza, E. T., Thomas, E. M., Esteves, M. J. G., Angluster, J. and De Souza, W. (1980). Concanavalin A induced cell differentiation in the protozoan Herpetomonas samuelpessoai. Journal of Parasitology 66, 985988.CrossRefGoogle Scholar
Souza, M. C. M., Reis, A. P., Silva, W. D. and Brener, Z. (1974). Mechanism of acquired immunity induced by Leptomonas pessoai against Trypanosoma cruzi in mice. The Journal of Protozoology 21, 579583.CrossRefGoogle ScholarPubMed
Thomas, E. M., Esteves, M. J. G., Angluster, J., De Souza, W. and Jurkiewicz, A. (1981 a). Changes in cell shape and induction of cell differentiation in the protozoan Herpetomonas samuelpessoai by cholinergic drugs. Research. Communication of Chemical Pathology and Pharmacology 34, 8188.Google ScholarPubMed
Thomas, E. M., Souza, E. T., Esteves, M. J. G., Angluster, J. and De Souza, W. (1981 b). Herpetomonas samuelpessoai: changes in cell shape and induction of differentiation by local anesthetic. Experimental Parasitology 51, 366372.CrossRefGoogle ScholarPubMed
Vermelho, A. B., Giovanni-de-Simone, S., d'Avila-Levy, C. M., Santos, A. L. S., Nogueira de Melo, A. C., Silva-Junior, F. P., Bom, E. P. and Branquinha, M. H. (2007). Trypanosomatidae: peptidases and drugs development. Current Enzyme Inhibition 3, 1948.CrossRefGoogle Scholar
Vickerman, K. (1994). The evolutionary expansion of the trypanosomatid flagellates. International Journal for Parasitology 24, 13171331.CrossRefGoogle ScholarPubMed