Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T05:22:17.388Z Has data issue: false hasContentIssue false

The course of Plasmodium berghei, P. chabaudi and P. yoelii infections in β-thalassaemic mice

Published online by Cambridge University Press:  06 April 2009

G. Clarebout
Affiliation:
INSERM U42, 369 rue Jules Guesde, BP39, F-59651 Villeneuve d' Ascq cedex, France
B. Gamain
Affiliation:
INSERM U42, 369 rue Jules Guesde, BP39, F-59651 Villeneuve d' Ascq cedex, France
C. Slomianny
Affiliation:
INSERM U42, 369 rue Jules Guesde, BP39, F-59651 Villeneuve d' Ascq cedex, France
D. Camus
Affiliation:
INSERM U42, 369 rue Jules Guesde, BP39, F-59651 Villeneuve d' Ascq cedex, France
D. Dive
Affiliation:
INSERM U42, 369 rue Jules Guesde, BP39, F-59651 Villeneuve d' Ascq cedex, France

Summary

In order to study the effects of acclimatization of Plasmodium in β-thalassaemic mice, we used a mouse model of β-thalassaemia (DBA/2J/β-thal/β-thal), similar to that observed in humans. We acclimatized 3 rodent malarias (P. berghei, P. chabaudi and P. yoelii) in DBA/2J and DBA/2J/β-thal/β-thal mice lines, by 4 intraperitoneal serial transfers. All 3 rodent malarias developed in red blood cells of β-thalassaemic mice without losing their virulence. There was no delay in infection and peaks of parasitaemia were similar in β-thalassaemic and normal mice. The mortality occurred earlier in β-thalassaemic mice than in control mice for P. berghei and P. chabaudi. This difference was more pronounced for P. yoelii NS where normal mice did not die. These results could be explained by a failure of erythropoiesis in β-thalassaemic mice, which are unable to compensate for the destruction of red blood cells by the parasites, and the mice died of anaemia. Ultrastructural examination of the rodent malaria parasites in β-thalassaemic RBC showed a normal development even in the presence of Heinz bodies. In conclusion, no effective protection against malaria was provided by the β-thalassaemia in this mouse model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Becuwe, P., Slomianny, C., Camus, D. & Dive, D. (1993). Presence of an endogenous superoxide dismutase activity in three rodent malaria species. Parasitology Research 79, 349–52.CrossRefGoogle ScholarPubMed
Brockelman, C. R., Wongsattayanont, B., Tan-Ariya, P. & Fucharoen, S. (1987). Thalassemic erythrocytes inhibit in vitro growth of Plasmodium falciparum. Journal of Clinical Microbiology 25, 5660.CrossRefGoogle ScholarPubMed
Brunoni, M., Falcioni, G. & Fioreti, E. (1975). Formation of superoxide in the autoxidation of the isolated alpha and beta chains of human hemoglobin and its involvement in hemichrome precipitation. European Journal of Biochemistry 53, 99104.CrossRefGoogle Scholar
Bunyaratvej, A., Butthep, P., Sae-Ung, N., Fucharoen, S. & Yuthavong, Y. (1992). Reduced deformability of thalassemic erythrocytes and erythrocytes with abnormal hemoglobins and relation with susceptibility to Plasmodium falciparum invasion. Blood 79, 2460–3.CrossRefGoogle ScholarPubMed
Friedman, M. J. (1979). Oxidant damage mediates variant red cell resistance to malaria. Nature, London 280, 245–7.CrossRefGoogle ScholarPubMed
Golenser, J. & Chevion, M. (1989). Oxidant stress and malaria: host–parasite interrelationships in normal and abnormal erythrocytes. Seminars in Hematology 26, 313–25.Google ScholarPubMed
Golenser, J. & Chevion, M. (1993). Implications of oxidant stress in malaria. In Free Radicals in Tropical Diseases, (ed. Aruoma, I.), pp. 5379. Switzerland: Harwood Academic Publishers.Google Scholar
Haldane, J. B. S. (1949). The rate of mutation of human genes. Proceedings of the VIII International Congress on Genetics and Heredity (Suppl. 35), 367.Google Scholar
Johnson, F. M. & Lewis, S. E. (1981). Electrophoretically detected germinal mutation induced in the mouse by ethylnitrosourea. Proceedings of the National Academy of Sciences, USA 78, 3138–41.CrossRefGoogle ScholarPubMed
Leroy-Viard, K., Rouyer-Fessard, P., Sauvage, C., Scott, M. & Beuzard, Y. (1992). Modèles expérimentaux de la β-thalassémie. Médecine/Sciences 8, 784–9.CrossRefGoogle Scholar
Marklund, S. & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47, 469–74.CrossRefGoogle Scholar
Maurois, P., Pessah, M., Briche, I. & Alcindor, L. G. (1985). Alterations of lecithin-cholesterol acyltransferase activity during P. chabaudi rodent malaria. Biochimie 67, 227–39.CrossRefGoogle Scholar
Nagel, R. L. (1990). Innate resistance to malaria: the intraerythrocytic cycle. Blood Cells 16, 321–39.Google ScholarPubMed
Pasvol, G. & Wilson, R. J. M. (1982). The interaction of malaria parasites with red blood cells. British Medical Journal 38, 133–40.Google ScholarPubMed
Paglia, D. E. & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine 70, 158–69.Google ScholarPubMed
Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cell Biology 17, 208–12.CrossRefGoogle ScholarPubMed
Roth, E. F., Raventos-Suarez, C., Rinaldi, A. & Nagel, R. (1983). Glucose-6-phosphate dehydrogenase deficiency inhibits in vitro growth of Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 80, 298–9.CrossRefGoogle ScholarPubMed
Roth, E. F., Shear, H. L., Costantini, F., Tanowitz, H. B. & Nagel, R. L. (1988). Malaria in β-thalassemic mice and the effects of the transgenic human β-globin gene and splenectomy. Journal of Laboratory and Clinical Medicine 111, 3541.Google ScholarPubMed
Rouyer-Fessard, P., Garel, M. C., Domenget, C., Guetarai, D., Bachir, D., Colonna, P. & Beuzard, Y. (1989). A study of membrane protein defects and alpha-hemoglobin chain blood cells in human β-thalassemia. Journal of Biological Chemistry 264, 19092–8.CrossRefGoogle ScholarPubMed
Rouyer-Fessard, P., Leroy-Viard, K., Domenget, C., Mrad, A. & Beuzard, Y. (1990). Mouse β-thalassemia, a model for the membrane defects of erythrocytes in the human disease. Journal of Biological Chemistry 265, 20247–51.CrossRefGoogle Scholar
Shear, H. L., Roth, E. F. Jr, Ng, C. & Nagel, R. L. (1991). Resistance to malaria in ankyrin and spectrin deficient mice. British Journal of Haematology 78, 555–60.CrossRefGoogle ScholarPubMed
Skow, L. C., Burkhart, B. A., Johnson, F. M., Popp, R. A., Popp, D. M., Goldberg, S. Z., Anderson, W. F., Barnett, L. B. & Lewis, S. E. (1983). A mouse model for β-thalassemia. Cell 34, 1043–52.CrossRefGoogle ScholarPubMed
Teo, C. G. & Wong, H. B. (1985). The innate resistance of thalassaemia to malaria: a review of the evidence and possible mechanism. Singapore Medical Journal 26, 504–9.Google Scholar
Thomson, J. K., Nance, S. L. & Tollaksen, S. L. (1978). Spectrophotometric assay of catalase with perborate as substrate. Proceedings of the Society for Experimental Biology and Medicine 157, 33–5.CrossRefGoogle ScholarPubMed
Udomangpetch, R., Sueblinvong, T., Pattanapanyasat, K., Dharmkrong-At, A., Kittikalayawong, A. & Webster, H. K. (1993). Alteration in cytoadherence and resetting of Plasmodium falciparum-infected thalassemic red blood cells. Blood 82, 3752–9.CrossRefGoogle Scholar
Winterbourn, C. C., Hawkins, R. E., Brian, M. & Carewell, R. W. (1975). The estimation of red cell superoxide dismutase activity. Journal of Laboratory and Clinical Medicine 85, 337–41.Google ScholarPubMed
Winterbourn, C. C., McGrath, B. M. & Carrell, R. W. (1976). Reaction involving superoxide and normal and unstable haemoglobins. The Biochemical Journal 155, 493502.CrossRefGoogle ScholarPubMed