Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T17:06:08.814Z Has data issue: false hasContentIssue false

Concentration and retention of Toxoplasma gondii surrogates from seawater by red abalone (Haliotis rufescens)

Published online by Cambridge University Press:  30 August 2016

KRISTEN C. SCHOTT
Affiliation:
Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
COLIN KRUSOR
Affiliation:
Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
M. TIM TINKER
Affiliation:
Long Marine Laboratory, U.S. Geological Survey, Western Ecological Research Center, 100 Shaffer Road, Santa Cruz, CA 95060, USA Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
JAMES MOORE
Affiliation:
California Department of Fish and Wildlife and UC Davis-Bodega Marine Laboratory, PO Box 247, Bodega Bay, CA 94923, USA
PATRICIA A. CONRAD
Affiliation:
Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA One Health Institute, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
KAREN SHAPIRO*
Affiliation:
Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA One Health Institute, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
*
*Corresponding author: Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA. E-mail: [email protected]

Summary

Small marine snails and abalone have been identified as high- and low-risk prey items, respectively, for exposure of threatened southern sea otters to Toxoplasma gondii, a zoonotic parasite that can cause fatal encephalitis in animals and humans. While recent work has characterized snails as paratenic hosts for T. gondii, the ability of abalone to vector the parasite has not been evaluated. To further elucidate why abalone predation may be protective against T. gondii exposure, this study aimed to determine whether: (1) abalone are physiologically capable of acquiring T. gondii; and (2) abalone and snails differ in their ability to concentrate and retain the parasite. Abalone were exposed to T. gondii surrogate microspheres for 24 h, and fecal samples were examined for 2 weeks following exposure. Concentration of surrogates was 2–3 orders of magnitude greater in abalone feces than in the spiked seawater, and excretion of surrogates continued for 14 days post-exposure. These results indicate that, physiologically, abalone and snails can equally vector T. gondii as paratenic hosts. Reduced risk of T. gondii infection in abalone-specializing otters may therefore result from abalone's high nutritional value, which implies otters must consume fewer animals to meet their caloric needs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arkush, K. D., Miller, M. A., Leutenegger, C. M., Gardner, I. A., Packham, A. E., Heckeroth, A. R., Tenter, A. M., Barr, B. C. and Conrad, P. A. (2003). Molecular and bioassay-based detection of Toxoplasma gondii oocyst uptake by mussels (Mytilus galloprovincialis). International Journal for Parasitology 33, 10871097.Google Scholar
Allen, B., Callaway, M., Haaker, P., Kalvass, P., Karpov, K., Kashiwada, J., Lauermann, A., Moore, J., O'Leary, J., O'Reilly, K., Patyten, M., Ramsay, J., Rogers-Bennett, L., Skeen, C., Taniguchi, I., Tillman, T., Watters, D. and Wine, V. (2005). Abalone Recovery and Management Plan. Final Report to the California Fish and Game Commission. California Department of Fish and Game Marine Region Report. 363 pages. https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=29494&inline.Google Scholar
Chadès, I., Curtis, J. M. R. and Martin, T. G. (2012). Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone. Conservation Biology 26, 10161025.Google Scholar
Conrad, P. A., Miller, M. A., Kreuder, C., James, E. R., Mazet, J., Dabritz, H., Jessup, D. A., Gulland, F. and Grigg, M. E. (2005). Transmission of Toxoplasma: clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment. International Journal for Parasitology 35, 11551168.Google Scholar
Cook, E. A. (2007). Green site design: strategies for storm water management. Journal of Green Building 2, 4656.Google Scholar
Crosson, L. M., Wight, N., VanBlaricom, G. R., Kiryu, I., Moore, J. D. and Friedman, C. S. (2014). Abalone withering syndrome: distribution, impacts, current diagnostic methods and new findings. Diseases of Aquatic Organisms 108, 261270.Google Scholar
Daniels, M. E., Hogan, J., Smith, W. A., Oates, S. C., Miller, M. A., Hardin, D., Shapiro, K., Huertos, M. L., Conrad, P. A., Dominik, C. and Watson, F. G. R. (2014). Estimating environmental conditions affecting protozoal pathogen removal in surface water wetland systems using a multi-scale, model-based approach. Science of the Total Environment 493, 10361046.Google Scholar
Dubey, J. P. (1996). Pathogenicity and infectivity of Toxoplasma gondii oocysts for rats. Journal of Parasitology 82, 951956.Google Scholar
Dubey, J. P. (1998). Advances in the life cycle of Toxoplasma gondii . International Journal for Parasitology 28, 10191024.Google Scholar
Dubey, J. P. and Frenkel, J. K. (1972). Cyst-induced toxoplasmosis in cats. Journal of Protozoology 19, 155177.Google Scholar
Dubey, J. P. and Jones, J. L. (2008). Toxoplasma gondii infection in humans and animals in the United States. International Journal for Parasitology 38, 12571278.CrossRefGoogle ScholarPubMed
Dubey, J. P., Lunney, J. K. and Shen, S. K. (1996). Infectivity of low numbers of Toxoplasma gondii oocysts to pigs. Journal of Parasitology 82, 438443.Google Scholar
Dubey, J. P., Zarnke, R., Thomas, N. J., Wong, S. K., Van Bonn, W., Briggs, M., Davis, J. W., Ewing, R., Mense, M., Kwok, O. C. H., Romand, S. and Thulliez, P. (2003). Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals. Veterinary Parasitology 116, 275296.Google Scholar
Estes, J. A. and Palmisano, J. F. (1974). Sea otters: their role in structuring nearshore communities. Science 185, 10581060.CrossRefGoogle ScholarPubMed
Flegr, J. (2007). Effects of Toxoplasma on human behavior. Schizophrenia Bulletin 33, 757760.Google Scholar
Garcia-Esquivel, Z. and Felbeck, H. (2009). Comparative performance of juvenile red abalone, Haliotis rufescens, reared in laboratory with fresh kelp and balanced diets. Aquaculture Nutrition 15, 209217.Google Scholar
Hogan, J. N., Daniels, M. E., Watson, F. G., Oates, S. C., Miller, M. A., Conrad, P. A., Shapiro, K., Hardin, D., Dominik, C., Melli, A., Jessup, D. A. and Miller, W. A. (2013). Hydrologic and vegetative removal of Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii surrogate microspheres in coastal wetlands. Applied and Environmental Microbiology 79, 18591865.Google Scholar
Johnson, C. K., Tinker, M. T., Estes, J. A., Conrad, P. A., Staedler, M., Miller, M. A., Jessup, D. A. and Mazet, J. A. K. (2009). Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system. Proceedings of the National Academy of Sciences of the United States of America 106, 22422247.Google Scholar
Jones, J. L., Dargelas, V., Roberts, J., Press, C., Remington, J. S. and Montoya, J. G. (2009). Risk factors for Toxoplasma gondii infection in the United States. Clinical Infectious Diseases 49, 878884.Google Scholar
Kreuder, C., Miller, M. A., Jessup, D. A., Lowenstine, L. J., Harris, M. D., Ames, J. A., Carpenter, T. E., Conrad, P. A. and Mazet, J. A. K. (2003). Patterns of mortality in southern sea otters (Enhydra lutris nereis) from 1998–2001. Journal of Wildlife Diseases 39, 495509.Google Scholar
Krusor, C., Smith, W. A., Tinker, M. T., Silver, M., Conrad, P. A. and Shapiro, K. (2015). Concentration and retention of Toxoplasma gondii oocysts by marine snails demonstrate a novel mechanism for transmission of terrestrial zoonotic pathogens in coastal ecosystems. Environmental Microbiology 17, 45274537.CrossRefGoogle ScholarPubMed
Lindsay, D. S., Collins, M. V., Mitchell, S. M., Wetch, C. N., Rosypal, A. C., Flick, G. J., Zajac, A. M., Lindquist, A. and Dubey, J. P. (2004). Survival of Toxoplasma gondii oocysts in Eastern oysters (Crassostrea virginica). Journal of Parasitology 90, 10541057.Google Scholar
Lowry, M. L. F. and Pearse, J. S. (1973). Abalones and sea urchins in an area inhabited by sea otters. Marine Biology 9, 213219.Google Scholar
Luft, B. J., Hafner, R., Korzun, A. H., Leport, C., Antoniskis, D., Bosler, E. M., Bourland, D. D. III, Uttamchandani, R., Fuhrer, J., Jacobson, J., Morlat, P., Vilde, J., Remington, J. S. and Members of the ACTG 077p/ANRS 009 Study Team (1993). Toxoplasmic encephalitis in patients with the acquired immunodeficiency syndrome. New England Journal of Medicine 329, 9951000.Google Scholar
Mazzillo, F. F. M., Shapiro, K. and Silver, M. W. (2013). A new pathogen transmission mechanism in the ocean: the case of sea otter exposure to the land-parasite Toxoplasma gondii . PLoS ONE 8, e82477.Google Scholar
Miller, M. A., Gardner, I. A., Kreuder, C., Paradies, D. M., Worcester, K. R., Jessup, D. A., Dodd, E., Harris, M. D., Ames, J. A., Packham, A. E. and Conrad, P. A. (2002). Coastal freshwater runoff is a risk factor for Toxoplasma gondii infection of southern sea otters (Enhydra lutris nereis). International Journal for Parasitology 32, 9971006.Google Scholar
Miller, M. A., Miller, W. A., Conrad, P. A., James, E. R., Melli, A. C., Leutenegger, C. M., Dabritz, H. A., Packham, A. E., Paradies, D., Harris, M., Ames, J., Jessup, D. A., Worcester, K., and Grigg, M. E. (2008). Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: new linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters. International Journal for Parasitology 38, 13191328.CrossRefGoogle Scholar
Miller, M. A., Byrne, B. A., Jang, S. S., Dodd, E. M., Dorfmeier, E., Harris, M. D., Ames, J., Paradies, D., Worcester, K., Jessup, D. A. and Miller, W. A. (2010a). Enteric bacterial pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with coastal urbanization and freshwater runoff. Veterinary Research 41, 113.Google Scholar
Miller, M. A., Conrad, P. A., Harris, M., Hatfield, B., Langlois, G., Jessup, D. A., Magargal, S. L., Packham, A. E., Toy-Choutka, S., Melli, A. C., Murray, M. A., Gulland, F. M. and Grigg, M. E. (2010b). A protozoal-associated epizootic impacting marine wildlife: mass-mortality of southern sea otters (Enhydra lutris nereis) due to Sarcocystis neurona infection. Veterinary Parasitology 172, 183194.CrossRefGoogle ScholarPubMed
Moore, J. D., Robbins, T. T. and Friedman, C. S. (2000). Withering syndrome in farmed red abalone Haliotis rufescens: thermal induction and association with a gastrointestinal rickettsiales-like prokaryote. Journal of Aquatic Animal Health 12, 2634.Google Scholar
Oftedal, O., Ralls, K., Tinker, M. T. and Green, A. (2007). Nutritional constraints on the southern sea otter in the Monterey Bay National Marine Sanctuary, and a comparison to sea otter populations at San Nicholas Island, California and Glacier Bay, Alaska. Final Report to the Monterey Bay National Marine Sanctuary and the Marine Mammal Commission. http://sanctuarysimon.org/regional_docs/monitoring_projects/100263_report.pdf Google Scholar
Raimondi, P., Jurgens, L. J. and Tinker, M. T. (2015). Evaluating potential conservation conflicts between two listed species: sea otters and black abalone. Ecology 96, 31023108.Google Scholar
Schneider, C. A., Rasband, W. S. and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671675.Google Scholar
Shapiro, K. (2012). Climate and coastal habitat change: a recipe for a dirtier ocean. Marine Pollution Bulletin 64, 10791080.CrossRefGoogle Scholar
Shapiro, K., Largier, J., Mazet, J. A. K., Bernt, W., Ell, J. R., Melli, A. C. and Conrad, P. A. (2009). Surface properties of Toxoplasma gondii oocysts and surrogate microspheres. Applied and Environmental Microbiology 75, 11851191.Google Scholar
Shapiro, K., Mazet, J. A. K., Schriewer, A., Wuertz, S., Fritz, H., Miller, W. A., Largier, J. and Conrad, P. A. (2010a). Detection of Toxoplasma gondii oocysts and surrogate microspheres in water using ultrafiltration and capsule filtration. Water Research 44, 893903.Google Scholar
Shapiro, K., Conrad, P. A., Mazet, J. A. K., Wallender, W. W., Miller, W. A. and Largier, J. L. (2010b). Effect of estuarine wetland degradation on transport of Toxoplasma gondii surrogates from land to sea. Applied and Environmental Microbiology 76, 68216828.Google Scholar
Shapiro, K., Silver, M. W., Largier, J. L., Conrad, P. A. and Mazet, J. A. K. (2012). Association of Toxoplasma gondii oocysts with fresh, estuarine, and marine macroaggregates. Limnology and Oceanography 57, 449456.Google Scholar
Staggs, S. E., Keely, S. P., Ware, M. W., Schable, N., See, M. J., Gregorio, D., Zou, X., Su, C., Dubey, J. P. and Villegas, E. N. (2015). The development and implementation of a method using blue mussels (Mytilus spp.) as biosentinels of Cryptosporidium spp. and Toxoplasma gondii contamination in marine aquatic environments. Parasitology Research 114, 46554667.Google Scholar
Tenter, A. M., Heckeroth, A. R. and Weiss, L. M. (2000). Toxoplasma gondii: from animals to humans. International Journal for Parasitology 30, 12171258.Google Scholar
Tinker, M. T., Bentall, G. and Estes, J. A. (2008). Food limitation leads to behavioral diversification and dietary specialization in sea otters. Proceedings of the National Academy of Sciences of the United States of America 105, 560565.Google Scholar
Tinker, M. T., Guimarães, P. R., Novak, M., Marquitti, F. M. D., Bodkin, J. L., Staedler, M., Bentall, G. and Estes, J. A. (2012). Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters. Ecology Letters 15, 475483.Google Scholar
Tinker, M. T., Tomoleoni, J., Weitzman, B., Staedler, M., Jessup, D., Murray, M., Miller, M., Burgess, T., Bowen, L., Miles, K., Thometz, N., Tarjan, L., Golson, E., Batac, F., Dodd, E., Berberich, E., Kunz, J., Bentall, G., Fujii, J., Nicholson, T., Newsome, S., Melli, A., LaRoche, N., MacCormick, H., Johnson, A., Henkel, L., Kreuder-Johnson, C. and Conrad, P. (2013). Sea otter population biology at Big Sur and Monterey California: investigating the consequences of resource abundance and anthropogenic stressors for sea otter recovery. Final Report to California Coastal Conservancy and U.S. Fish and Wildlife Service. US Geological Survey Project Report. 242 pages. https://www.fws.gov/ventura/docs/species/sso/Big%20Sur%20Monterey%20Sea%20Otter%20Study%20Draft%20Report.pdf.Google Scholar
Tutschulte, T. C. and Connell, J. H. (1988). Feeding behavior and algal food of three species of abalones (Haliotis) in southern California. Marine Ecology Progress Series 49, 5764.Google Scholar
Watanabe, J. M. (1984). Food preference, food quality and diets of three herbivorous gastropods (Trochidae: Tegula) in a temperate kelp forest habitat. Oecologia 62, 4752.Google Scholar
Wendell, F. (1994). Relationship between sea otter range expansion and red abalone abundance and size distribution in central California. California Fish and Game 80, 4556.Google Scholar
Supplementary material: File

Schott supplementary material

Tables S1-S3 and Figure S1

Download Schott supplementary material(File)
File 1.4 MB