Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T19:55:39.126Z Has data issue: false hasContentIssue false

A comparison of the sites of acid phosphatase activity in an adult filaria, Setaria sp. and in some gastro -intestinal nematodes

Published online by Cambridge University Press:  06 April 2009

Jun Maki
Affiliation:
Department of Parasitology, Kitasato University School of Medicine, Sagamihara 228, Kanagawa, Japan
Toshio Yanagisawa
Affiliation:
Department of Parasitology, Kitasato University School of Medicine, Sagamihara 228, Kanagawa, Japan

Summary

The histochemical localization of acid phosphatase in an adult filaria, Setaria sp. obtained from the peritoneal cavity of a cow was closely examined and compared with that of adult nematodes parasitic in the host alimentary canal; special attention was paid to the intestine and body wall of the parasites. Setaria sp. was found to show high acid phosphatase activity in the interchordal hypodermis of the body wall and uterine microfilariae, and similar activity is suspected to occur in the cuticle. The intestine of this nematode exhibited very low, if any, activity. In contrast, nematodes parasitic on the alimentary canal, such as Toxocara cati, T. canis, Physaloptera sp. and Ancylostoma caninum, showed no activity in the body wall and very high activity in the luminal surface of their intestine. The possible function of the abundant acid phosphatase in the body wall of this filaria is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barka, T. (1960). A simple azo-dye method for histochemical demonstration of acid phosphatase. Nature, London 187, 248–9.CrossRefGoogle ScholarPubMed
Borgers, M. & De Nollin, S. (1975). Ultrastructural changes in Ascaris suum intestine after mebendazole treatment in vivo. Journal of Parasitology 61, 110–22.CrossRefGoogle ScholarPubMed
Butterworth, J. & Probert, A. J. (1970). Non-specific phosphomonoesterases of Ascaris suum. I. Effect of inhibitors, activators and chelators. Experimental Parasitology 28, 557–65.CrossRefGoogle ScholarPubMed
Castro, G. A. & Fairbairn, D. (1969). Comparison of cuticular and intestinal absorption of glucose by adult Ascaris lumbricoides. Journal of Parasitology 55, 1316.CrossRefGoogle ScholarPubMed
Chen, S. N. & Howells, R. E. (1979 a). The uptake in vitro of dyes, monosaccharides and amino acids by the fiarial worm Brugia pahangi. Parasitology 78, 343–54.CrossRefGoogle Scholar
Chen, S. N. & Howells, R. E. (1979 b). Brugia pahangi: uptake and incorporation of adenosine and thymidine. Experimental Parasitology 47, 209–21.CrossRefGoogle ScholarPubMed
Hawking, F. (1973). Chemotherapy of tissue nematodes. In Chemotherapy of Helminthiasis, vol. 1 (ed. Cavier, R. and Hawking, F.), pp. 437500. Oxford, New York, Toronto, Sydney and Braunschweig: Pergamon Press.Google Scholar
Jenkins, T. (1973). Histochemical and fine structure observations of the intestinal epithelium of Trichuris suis (Nematoda: Trichuroidea). Zeitschrift für Parasitenkunde 42, 165–83.CrossRefGoogle ScholarPubMed
Lee, D. L. (1965). The Physiology of Nematodes. Edinburgh and London: Oliver and Boyd.Google Scholar
Maki, J. & Yanagisawa, T. (1979). Acid phosphatase activity demonstrated in the nematodes, Dirofilaria immitis and Angiostrongylus cantonensis with special reference to the characters and distribution. Parasitology 80, 2338.CrossRefGoogle Scholar
Maki, J. & Yanagisawa, T. (1980). Histochemical studies on acid phosphatase of the body wall and intestine of adult filarial worms in comparison with that of other parasitic nematodes. Journal of Helminthology 54, 3941.CrossRefGoogle Scholar
Nimmo-Smith, R. H. & Keeling, J. E. D. (1960). Some hydrolytic enzymes of the parasitic nematode Trichuris muris. Experimental Parasitology 10, 337–55.CrossRefGoogle Scholar
Parshad, V. R. & Guraya, S. S. (1978). Morphological and histochemical observations on the intestinal epithelium of Ascaridia galli (Nematoda: Ascaridida). Zeitschrift für Parasitenkunde 55, 199208.CrossRefGoogle ScholarPubMed
Poinar, G. O. Jr & Hess, R. (1977). Romanomermis culicivorax: morphological evidence of transcuticular uptake. Experimental Parasitology 42, 2733.CrossRefGoogle ScholarPubMed
Probert, A. J. (1969). Morphological and histochemical studies on the larval stages of Metastrongylus spp. (lungworms of swine) in the earthworm intermediate host, Eisenia foetida, Savigny 1826. Parasitology 59, 269–77.CrossRefGoogle Scholar
Riding, I. L. (1970). Microvilli on the outside of a nematode. Nature, London 226, 179–80.CrossRefGoogle ScholarPubMed
Rutherford, T. A. & Webster, J. M. (1974). Transcuticular uptake of glucose by the entomophilic nematode, Mermis nigrescens. Journal of Parasitology 60, 804–8.CrossRefGoogle ScholarPubMed
Sanhueza, P., Palma, R., Oberhauser, E., Orrego, H., Parsons, D. S. & Salinas, A. (1968). Absorption of carbohydrates by intestine of Ascaris lumbricoides in vitro. Nature, London 219, 1062–3.CrossRefGoogle ScholarPubMed
Schillhorn van veen, T. W. & Blotkamp, J. (1978). Histochemical differentiation of microfilariae of Dipetalonema, Dirofilaria, Onchocerca and Setaria spp. of man and domestic animals in the Zaria area (Nigeria). Tropenmedizin und Parasitologie 29, 33–5.Google Scholar
Sheffield, H. G. (1964). Electron microscope studies on the intestinal epithelium of Ascaris suum. Journal of Parasitology 50, 365–79.CrossRefGoogle ScholarPubMed
Sood, M. L. & Sehajpal, K. (1978). Morphological, histochemical and biochemical studies on the gut of Haemonchus contortus Rud., 1803. Zeitschrift für Parasitenkunde 56, 267–73.CrossRefGoogle ScholarPubMed
Vincent, A. L., Ash, L. R. & Frommes, S. P. (1975). The ultrastructure of adult Brugia malayi. Journal of Parasitology 61, 499512.CrossRefGoogle ScholarPubMed
Yanagisawa, T. & Koyama, T. (1970). Glucose utilization, lactic acid production and glycogen content of ligated and non-ligated Dirofilaria immitis and distribution of acid phosphatase activity. The Joint Conference of Parasitic Diseases. The United States-Japan Cooperative Medical Science Program, pp. 2223.Google Scholar
Yanagisawa, T., Koyama, T. & Futaba, M. (1970). Carbohydrate metabolism of Angiostrongylus cantonensis (7) Glucose absorption by ligated worms and their phosphatase distribution. Japanese Journal of Parasitology 19, 392–3.Google Scholar