Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T20:06:53.739Z Has data issue: false hasContentIssue false

Comparison of parasitological, immunological and molecular methods for evaluation of fecal samples of immunosuppressed rats experimentally infected with Strongyloides venezuelensis

Published online by Cambridge University Press:  07 October 2015

LEILANE A. CHAVES
Affiliation:
Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Av. Pará 1720, Uberlândia, 38400-902 Minas Gerais, Brazil
ANA LÚCIA R. GONÇALVES
Affiliation:
Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Av. Pará 1720, Uberlândia, 38400-902 Minas Gerais, Brazil
FABIANA M. PAULA
Affiliation:
Laboratório de Investigação Médica, Hospital de Clínicas da Universidade de São Paulo, São Paulo, Brazil
NEIDE. M. SILVA
Affiliation:
Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Av. Pará 1720, Uberlândia, 38400-902 Minas Gerais, Brazil
CLÁUDIO V. SILVA
Affiliation:
Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Av. Pará 1720, Uberlândia, 38400-902 Minas Gerais, Brazil
JULIA M. COSTA-CRUZ
Affiliation:
Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Av. Pará 1720, Uberlândia, 38400-902 Minas Gerais, Brazil
MICHELLE A. R. FREITAS*
Affiliation:
Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Av. Pará 1720, Uberlândia, 38400-902 Minas Gerais, Brazil
*
* Corresponding author: Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Avenida Pará 1720, 38400-902 Uberlândia, Minas Gerais, Brazil. E-mail: [email protected]

Summary

Definitive diagnosis of strongyloidiasis in humans is typically achieved by detection of larvae in fecal samples. However, limitations on sensitivity of parasitological methods emphasize the need for more robust diagnostic methods. The aim of this study was to compare the diagnostic value of three methods: eggs per gram of feces (EPG), coproantigen detection by enzyme linked immunosorbent assay (ELISA), and DNA detection by conventional polymerase chain reaction (PCR). The assays were performed at 0 and 5, 8, 13, 21 and 39 days post-infection (dpi) using fecal samples from experimentally infected immunocompetent and immunosuppressed rats. In immunocompetent rats, eggs were detected in feces on days 5, 8 and 13 dpi; coproantigen detection and PCR amplification were successful at all post-infection time points (5, 8, 13, 21 and 39 dpi). In immunosuppressed rats, eggs were detected at 5, 8, 13 and 21; coproantigen detection and PCR amplification were successful at all post-infection time points. In conclusion, these results suggest that coproantigen detection and PCR may be more sensitive alternatives to traditional methods such as EPG for diagnosis of Strongyloides venezuelensis infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, J. W. A. (1989). A serological test for the diagnosis of Strongyloides antibodies in ex Far East Prisoners of War. Annals of Tropical Medicine and Parasitology 83, 241247.Google Scholar
Brockwell, Y. M., Spithill, T. W., Anderson, G. R., Grillo, V. and Sangster, N. C. (2013). Comparative kinetics of serological and coproantigen ELISA and faecal egg count in cattle experimentally infected with Fasciola hepatica and following treatment with triclabendazole. Veterinary Parasitology 196, 417426.Google Scholar
Corral, M. A., Paula, F. M., Gottardi, M., Meisel, D. M., Chieffi, P. P. and Gryschek, R. C. (2015). Membrane fractions from Strongyloides venezuelensis in the immunodiagnosis of human strongyloidiasis. Revista do Instituto de Medicina Tropical de São Paulo 57, 7780.Google Scholar
Dorris, M., Viney, M. E. and Blaxter, M. L. (2002). Molecular phylogenetic analysis of the genus Strongyloides and related nematodes. International Journal for Parasitology 32, 15071517.Google Scholar
Esteban-Redondo, I., Maley, S. W., Thomson, K., Nicoll, S., Wright, S., Buxton, D. and Innes, E. A. (1999). Detection of the T. gondii in tissues of sheep and cattle following oral infection. Veterinary Parasitology 86, 155171.CrossRefGoogle Scholar
Ferreira, C. M., Pereira, A. T. M., Amaral, F. A., de Souza, R. S., Coelho, F. M., Souza, D. G., Negrão-Corrêa, D. and Teixeira, M. M. (2009). Mechanisms of the airway hyperresponsiveness induced by Strongyloides venezuelensis infection in rats: role of capsaicin-sensitive neurons. Microbes and Infection 11, 315320.Google Scholar
Freitas, M. A., Vianna, E. N., Martins, A. S., Silva, E. F., Pesquero, J. L. and Gomes, M. A. (2004). A single step duplex PCR to distinguish Entamoeba histolytica from Entamoeba dispar . Parasitology 128, 625628.Google Scholar
Gasser, R. B. (1999). PCR-based technology in veterinary parasitology. Veterinary Parasitology 84, 229258.CrossRefGoogle ScholarPubMed
Genta, R. M. (1989). Global prevalence of strongyloidiasis: critical review with epidemiologic insights into the prevention of disseminated disease. Journal of Infectious Diseases 11, 755767.Google ScholarPubMed
Gonçalves, A. L. R., Rodrigues, R. M., Silva, N. M., Gonçalves, F. A., Cardoso, C. R., Beletti, M. E., Ueta, M. T., Silva, J. S. and Costa-Cruz, J. M. (2008). Immunolocalization and pathological alterations following Strongyloides venezuelensis infection in the lungs and the intestine of MHC class I or II deficient mice. Veterinary Parasitology 158, 319328.Google Scholar
Gonçalves, A. L. R., Silva, C. V., Ueta, M. T. and Costa-Cruz, J. M. (2010). A new faecal antigen detection system for Strongyloides venezuelensis diagnosis in immunosuppressed rats. Experimental Parasitology 125, 338341.Google Scholar
Gonçalves, A. L. R., Rocha, C. A., Gonzaga, H. T., Gonçalves-Pires, M. do R., Ueta, M. T. and Costa-Cruz, J. M. (2012 a). Specific IgG and IgA to larvae, parthenogenetic females and eggs of Strongyloides venezuelensis in the immunodiagnosis of human strongyloidiasis. Diagnostic Microbiology and Infectious Diseases 72, 7984.Google Scholar
Gonçalves, A. L. R., Ribeiro, T. S., Silva, C. V., Ueta, M. T. and Costa-Cruz, J. M. (2012 b). A novel approach based on antigen, antibody and immune complex detection in bronchoalveolar lavage fluid samples from rats experimentally infected with Strongyloides venezuelensis . Acta Tropica 124, 166169.CrossRefGoogle ScholarPubMed
Gordon, D. K., Zadoks, R. N., Stevenson, H., Sargison, N. D. and Skuce, P. J. (2012). On farm evaluation of the coproantigen ELISA and coproantigen reduction test in Scottish sheep naturally infected with Fasciola hepatica . Veterinary Parasitology 187, 436444.Google Scholar
Gordon, H. M. and Whitlock, H. V. A. (1939). New technique for counting nematode eggs in sheep faeces. Journal of the Council for Scientific and industrial Research 12, 5052.Google Scholar
Gottardi, M., Paula, F. M., Corral, M. A., Meisel, D. M., Costa, S. F., Abdala, E., Pierrotti, L. C., Yamashiro, J., Chieffi, P. P. and Gryschek, R. C. (2015). Immunofluorescence assay for diagnosis of strongyloidiasis in immunocompromised patients. Infectious Diseases (London, England) 2, 15.Google Scholar
Levenhagen, M. A. and Costa-Cruz, J. M. (2014). Update on immunologic and molecular diagnosis of human strongyloidiasis. Acta Tropica 135, 3343.Google Scholar
Marra, N. M., Chiuso-Minicucci, F., Machado, G. C., Zorzella-Pezavento, S. F., França, T. G., Ishikawa, L. L., Amarante, A. F., Sartori, A. and Amarante, M. R. (2010). Faecal examination and PCR to detect Strongyloides venezuelensis in experimentally infected Lewis rats. Memórias do Instituto Oswaldo Cruz 105, 5761.CrossRefGoogle ScholarPubMed
Negrão-Corrêa, D., Silveira, M. R., Borges, C. M., Souza, D. G. and Teixeira, M. M. (2003). Changes in pulmonary function and parasite burden in rats infected with Strongyloides venezuelensis concomitant with induction of allergic airway inflammation. Infection and Immunity 71, 26072614.Google Scholar
Nageswaran, C., Craig, P. S. and Devaney, E. (1994). Coproantigen detection in rats experimentally infected with Strongyloides ratti . Parasitology 108, 335342.Google Scholar
Nakai, E. S. and Amarante, A. F. T. (2001). Experimental infection of mice (Mus musculus) and rats (Rattus norvegicus) with Strongyloides venezuelensis . Revista Brasileira de Parasitologia Veterinária 10, 16.Google Scholar
Paula, F. M. and Costa-Cruz, J. M. (2011). Epidemiological aspects of strongyloidiasis in Brazil. Parasitology 138, 13311340.Google Scholar
Paula, F. M., Sitta, R. B., Malta, F. M., Gottardi, M., Corral, M. A., Gryschek, R. C. and Chieffi, P. P. (2013). Parasitological and molecular diagnosis in experimental Strongyloides venezuelensis infection. Revista do Instituto de Medicina Tropical de São Paulo 55, 141143.CrossRefGoogle ScholarPubMed
Puthiyakunnon, S., Boddu, S., Li, Y., Zhou, X., Wang, C., Li, J. and Chen, X. (2014). Strongyloidiasis – an insight into its global prevalence and management. PLoS Neglected Tropical Diseases 8, e3018.CrossRefGoogle ScholarPubMed
Rodrigues, R. M., Cardoso, C. R., Gonçalves, A. L., Silva, N. M., Massa, V., Alves, R., Ueta, M. T., Silva, J. S. and Costa-Cruz, J. M. (2013). Increased susceptibility to Strongyloides venezuelensis infection is related to the parasite load and absence of major histocompatibility complex (MHC) class II molecules. Experimental Parasitology 135, 580586.Google Scholar
Romand, S., Thulliez, P. and Dubey, J. P. (1998). Direct agglutination test for serologie diagnosis of Neospora caninum infection. Parasitology Research 84, 5053.Google Scholar
Rugai, E., Mattos, T. and Brisola, A. P. (1954). A new technique for the isolation of nematode larvae from faeces: modification of the Baermann method. Revista do Instituto Adolfo Lutz 14, 58.Google Scholar
Sandoval, N., Siles-Lucas, M., Lopez Alban, J., Pérez-Arellano, J. L., Gárate, T. and Muro, A. (2006). Schistosoma mansoni: a diagnostic approach to detect acute schistosomiasis infection in a murine model by PCR. Experimental Parasitology 114, 8488.CrossRefGoogle Scholar
Saugar, J. M., Merino, F. J., Martín-Rabadán, P., Fernández-Soto, P., Ortega, S., Gárate, T. and Rodríguez, E. (2015). Application of real-time PCR for the detection of Strongyloides spp. in clinical samples in a reference center in Spain. Acta Tropica 142, 2025.Google Scholar
Sykes, A. M. and McCarthy, J. S. (2011). A coproantigen diagnostic test for Strongyloides infection. PLoS Neglected Tropical Diseases 5, e955.Google Scholar
Wallen, N., Kita, H., Weiler, D. and Gleich, G. J. (1991). Glucocorticoids inhibit cytokine-mediated eosinophil survival. Journal of Immunology 147, 34903495.Google Scholar
Wang, D. and Gao, G. (2014). State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications. Discovery Medicine 18, 151161.Google Scholar
Wilson, M. B. and Nakane, P. K. (1978). Recent developments in the periodate method of conjugating horseradish peroxidase (HRPO) to antibodies. In Immunofluorescence and Related Technique (ed. Knapp, W., Holuban, K. and Wick, G.), p. 215. North Hol Biomedicine, Amsterdam, Vol. 1978.Google Scholar
Wongratanacheewin, S., Pumidonming, W., Sermswan, R. W. and Maleewong, W. (2001). Development of a PCR-based method for detection of Opisthorchis viverrini in experimentally infected hamsters. Parasitology 122, 175180.CrossRefGoogle ScholarPubMed
Yasuda, K., Matsumoto, M. and Nakanishi, K. (2014). Importance of both innate immunity and acquired immunity for rapid expulsion of S. venezuelensis . Frontiers in Immunology 5, 118.CrossRefGoogle ScholarPubMed