Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T08:37:32.117Z Has data issue: false hasContentIssue false

A comparison of multiplication rates in primary and challenge infections of Trypanosoma brucei bloodstream forms

Published online by Cambridge University Press:  06 April 2009

L. M. L. McLintock
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ
C. M. R. Turner
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ
K. Vickerman
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ

Summary

The hypothesis that division of Trypanosoma brucei slender bloodstream forms is dependent upon the availability of a host-derived growth factor has been tested by superimposing challenge doses of slender-form trypanosomes onto preexisting infections at a time during the primary infection when stumpy forms predominated. The challenge populations grew in the doubly-infected mice indicating that depletion of a putative growth factor by the expanding population of the primary infection had not prevented division of the trypanosomes although slight reductions in multiplication rates were observed. This effect was independent of the variable antigen type (VAT) of the trypanosomes and of their stock of origin.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balber, A. E. (1972). Trypanosoma brucei: fluxes of the morphological variants in intact and X-irradiated mice. Experimental Parasitology 31, 307–19.CrossRefGoogle ScholarPubMed
Barry, J. D., Crowe, J. S. & Vickerman, K. (1985). Neutralization of individual variable antigen types in metacyclic populations of Trypanosoma brucei does not prevent their subsequent expression in mice. Parasitology 90, 7988.CrossRefGoogle Scholar
Black, S. J., Hewett, R. S. & Sendashonga, C. N. (1982). Trypanosoma brucei variable surface antigen is released by degenerating parasites but not by actively dividing parasites. Parasite Immunology 4, 233–4.CrossRefGoogle Scholar
Black, S. J., Jack, R. M. & Morrison, W. I. (1983). Host-parasite interactions which influence the virulence of Trypanosoma (Trypanozoon) brucei brucei organisms. Acta Tropica 40, 1118.Google ScholarPubMed
Black, S. J., Murray, M., Shapiro, S. Z., Kaminsky, R., Borowy, N. K., Musanga, R. & Otieno-Omondi, F. (1989) Analysis of Propionibacterium acnes-induced non-specific immunity to Trypanosoma brucei in mice. Parasite Immunology 11, 371–83.CrossRefGoogle ScholarPubMed
Black, S. J., Sendashonga, C. N., O'Brien, C., Borowy, N. K., Naessens, M., Webster, P. & Murray, M. (1985). Regulation of parasitaemia in mice infected with Trypanosoma brucei. Current Topics in Microbiology and Immunology 117, 93118.Google ScholarPubMed
Coppens, I., Opperdoes, F. R., Courtoy, P. J. & Baudhuin, P. (1987). Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. Journal of Protozoology 34, 465–73.CrossRefGoogle ScholarPubMed
Hide, G., Gray, A., Harrison, C. M. & Tait, A. (1990). Identification of an epidermal growth factor receptor homologue in trypanosomes. Molecular and Biochemical Parasitology 39, 213–26.CrossRefGoogle Scholar
Jack, R. M., Black, S. J., Reed, S. L. & Davis, C. E. (1984). Indomethacin promotes differentiation of Trypanosoma brucei. Infection and Immunity 43, 445–8.CrossRefGoogle ScholarPubMed
Le Ray, D., Barry, J. D., Easton, C. & Vickerman, K. (1977). First tsetse fly transmission of the AnTat serodeme of Trypanosoma brucei. Annales de la Société beige Médecine Tropicale 57, 369–81.Google ScholarPubMed
Lumsden, W. H. R. (1972). Infectivity of salivarian trypanosomes to the mammalian host. Acta Tropica 29, 300–20.Google Scholar
Robertson, M. (1913). Notes on the life-history of Trypanosoma gambiense, with a brief reference to the cycles of Trypanosoma nanum and Trypanosoma pecorum in Glossina palpalis. Philosophical Transactions of the Royal Society, B 203, 161.Google Scholar
Sendashonga, C. N. & Black, S. J. (1982). Humoral responses against Trypanosoma brucei variable surface antigen are induced by degenerating parasites. Parasite Immunology 4, 245–57.CrossRefGoogle ScholarPubMed
Turner, C. M. R., Barry, J. D. & Vickerman, K. (1986). Independent expression of the metacyclic and bloodstream variable antigen repertoires of Trypanosoma brucei rhodesiense. Parasitology 92, 6773.CrossRefGoogle ScholarPubMed
Turner, C. M. R., Barry, J. D. & Vickerman, K. (1988). Loss of variable antigen during transformation of Trypanosoma brucei rhodesiense from bloodstream to procyclic forms in the tsetse fly. Parasitology Research 74, 507–11.CrossRefGoogle ScholarPubMed
Van Meirvenne, N., Janssens, P. G. & Magnus, E. (1975). Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. 1. Rationalization of the experimental approach. Annales de la Société beige Médecine Tropicale 55, 123.Google ScholarPubMed
Vickerman, K. (1985). Developmental cycles and biology of pathogenic trypansomes. British Medical Bulletin 41, 105–14.CrossRefGoogle Scholar
Wijers, D. J. B. (1959). Studies on the behaviour of trypanosomes, belonging to the brucei sub-group, in the mammalian host. Ph.D. thesis, University of Amsterdam.Google Scholar