Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T02:27:00.948Z Has data issue: false hasContentIssue false

Cloning, over-expression and evaluation of a recombinant fusion protein of Wuchereria bancrofti towards its application as a diagnostic agent for bancroftian filariasis

Published online by Cambridge University Press:  06 April 2009

J. G. Theodore
Affiliation:
Center for Biotechnology, Anna University, Madras 600 025, India
P. Kaliraj
Affiliation:
Center for Biotechnology, Anna University, Madras 600 025, India
S. Jayachandran
Affiliation:
Center for Biotechnology, Anna University, Madras 600 025, India
K. Jayaraman*
Affiliation:
Center for Biotechnology, Anna University, Madras 600 025, India
*
*Reprint requests to Dr K. Jayaraman.

Summary

A low molecular weight (15 kDa) surface antigen of the cattle filarial nematode, Setaria digitata, was earlier shown to be specifically recognized by the antibodies from human bancroftian filarial (Mf positive) patients' sera (Theodore & Kaliraj, 1990). The filarial specific antibodies bound to a 15 kDa peptide in preparative Western blots were eluted and employed in screening of candidate antigens expressed in the genomic library of Wuchereria bancrofti at the IgG4 subclass antibody level. A recombinant clone (λ WbG7) reacting strongly with filarial sera but poorly with sera from patients infected with non-filarial helminths was selected for further studies. The 2 kb DNA insert of the clone λ WbG7 was recloned into a pMAL vector and the recombinant clone pGT7 thus obtained was over-expressed and affinity purified. The purified 105 kDa fusion protein of the clone pGT7 was specific and was not recognized by the non-filarial sera at the IgG4 level. All microfilaraemic individuals were positive by IgG4 assay. However, similar attempts to diagnose by filarial-specific IgE assays failed to recognize microfilaraemic individuals. Moreover, by filarial-specific IgG4 assays, the endemic normals were distinctly divided into two groups, showing higher and lower recognition for this antigen indicating current and past/no infection. Among the filarial-IgG4 (assay)-positive ‘endemic normals’, 14% showed ‘microfilariae’ during repeated peripheral night blood examination, confirming the validity of the recombinant antigen, pGT7 based assay.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambroise-Thomas, P. (1974). Immunlogical diagnosis of human filariasis: present possibilities, difficulties and limitations. Acta Tropica 31, 108.Google Scholar
Baschong, W., Tanner, M., Betschart, B., Rudin, W. & Weiss, N. (1982). Dipetalonema viteae: extraction and immunogenicity of antigens from female worms. Experimental Parasitology S3, 262–9.CrossRefGoogle Scholar
Cabrera, Z. & Parkhouse, R. M. (1986). Identification of antigens of Onchocerca volvulus and O. gibsoni for diagnostic use. Molecular and Biochemical Parasitology 20, 225–31.CrossRefGoogle Scholar
Coutelier, J. P., van der Logt, J. T., Heesen, F. W., Warnier, G. & Van Snick, J. (1987). IgG2a restriction of murine antibodies elicited by viral infection. Journal of Experimental Medicine 165, 64–9.CrossRefGoogle Scholar
Dasgupta, A. & Bala, S. (1978). Litmosoides carinii: soluble antigen in circulation and immunosuppression in vitro. Indian Journal of Medical Research 67, 30–3.Google ScholarPubMed
Dissanayake, S. & Ismail, M. M. (1980). Antigens of Setaria digitata: cross-reaction with surface antigens of Wuchereria bancrofti microfilariae and serum antibodies in W. bancrofti infected subjects. Bulletin of the World Health Organization 58, 649–54.Google ScholarPubMed
Forsyth, K. p., Copeman, D. B., Anders, R. F. & Mitchell, G. F. (1981). The major radioiodinated cuticular antigens of O. gibsoni microfilariae are neither species nor Onchocerca specific. Acta Tropica 38, 343–52.Google Scholar
Harinath, B. c. (1984). Immunodiagnosis of bancroftian filariasis: problems and progress. Journal of Bioscience 6, 691.CrossRefGoogle Scholar
Hussain, R. & Ottesen, E. A. (1986). IgE responses in human filariasis. IV. Parallel antigen recognition by IgE and IgG4 subclass antibodies. Journal of Immunology 136, 1859–63.CrossRefGoogle ScholarPubMed
Huynth, T. V., Young, R. A. & Davis, R. W. (1985). Constructing and screening cDNA libraries in λgt10 and λgt11. In DNA Cloning: A Practical Approach, vol. 1 (ed. Glover, D. M.), pp. 4978. Oxford: IRL Press.Google Scholar
Kaliraj, p., Ghrinikar, S. N. & Harinath, B. C. (1981). Immunodiagnosis of bancroftian filariasis; comparative efficiency of the indirect hemagglutination test, indirect fluorescent antibody test, and enzyme-linked immunosorbent assay done with Wuchereria bancrofti microfilarial antigens. American Journal of Tropical Medicine and Hygiene 30, 982–7.Google Scholar
Katiyar, J. c. & Murthy, P. K. (1990). Approaches to diagnosis of lymphatic filariasis. Journal of Scientific and Industrial Research 49, 112–21.Google Scholar
Kellerman, O. K. & Ferenci, T. (1982). Maltose binding protein from E. coli. Methods in Enzymology 90, 459–63.CrossRefGoogle Scholar
Kent, N. H. (1963). Comparative immunochemistry of larval and adult worms of Schistosoma mansoni. Annals of the New York Academy of Sciences 133, 100.Google Scholar
Khalif, J., Guy, B., Capron, M., Kieny, M. P., Ameison, J. C., Montagnier, L., Lecocq, J. P. & Capron, A. (1988). Isotypic restriction of the antibody response to human immunodeficiency virus AIDS. Research in Human Retroviruses 4, 39.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5.CrossRefGoogle ScholarPubMed
Lal, R. B. & Ottesen, E. A. (1988). Enhanced diagnostic specificity in human filariasis by IgG4 antibody assessment. Journal of Infectious Diseases 158, 1034–7.CrossRefGoogle ScholarPubMed
Lobos, E. & Weiss, N. (1986). Identification of non-cross reacting antigens of Onchocerca volvulus with lymphatic filariasis serum pools. Parasitology 93, 389–99.Google Scholar
Lundell, D., Lunn, C., Greenberg, R., Fossetta, J., Narula, S., Kastelein, R. & Van Kimmenade, A. (1990). Exploiting the cell membrane for the production of heterologous proteins in E. coli. Biotechnology and Applied Biochemistry 12, 567–78.CrossRefGoogle Scholar
Maina, C. v., Riggs, P. D., Grandea, A. G. III, Slatko, B. E., Moran, L. S., Tagliamonte, J. A., McReynolds, L. A. & Guan, c. D. (1988). An E. coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene 74, 365–73.CrossRefGoogle Scholar
Maizels, R. M., Sutanto, I., Gomez-Priego, A., Lilly, J., White, K. & Denham, D. A. (1985). Specificity of surface molecules of adult Brugia parasites; cross reactivity with antibody from Wuchereria, Onchocerca and other human filarial infections. Tropical Medical Parasitology 36, 233–7.Google Scholar
Oliver-Gonzalez, J. & Morales, F. H. (1945). Common antigens among filarial and other nematode parasites of man. Journal of Infectious Diseases 77, 191–5.CrossRefGoogle Scholar
Ottesen, E. A. (1984). Immunological aspects of lymphatic filariasis and onchocerciasis in man. Transactions of the Royal Society of Tropical Medicine and Hygiene 78 (Suppl.), 917.Google Scholar
Ottesen, E. A., Weller, P. F. & Heck, L. (1977). Specific cellular immune unresponsiveness in human filariasis. Immunology 33, 413–21.Google Scholar
Ottesen, E. A., Weller, P. P., Lunde, M. N. & Hussain, R. (1982). Endemic filariasis in a Pacific island. II. Immunologic aspects: immunoglobulin, complement, and specific antifilarial IgG, IgM and IgE antibodies. American Journal of Tropical Medicine and Hygiene 31, 953–61.CrossRefGoogle Scholar
Paranjape, R. S., Hussain, R., Nutman, T. B., Hamilton, R. & Ottesen, E. A. (1986). Identification of circulating parasite antigen in patients with bancroftian filariasis. Clinical and Experimental Immunology 63, 508–16.Google ScholarPubMed
Partono, F. (1984). Filariasis in Indonesia: clinical manifestations and basic concepts of treatment and control. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 912.CrossRefGoogle ScholarPubMed
Raghavan, N., McReynolds, L. A., Maina, C. V., Feinstone, S. M., Jayaraman, K., Ottesen, E. A. & Nutman, T. B. (1991). A recombinant clone of Wuchereria bancrofti with DNA specificity for human lymphatic filarial parasites. Molecular and Biochemical Parasitology 47, 6372.CrossRefGoogle ScholarPubMed
Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Plasmid vectors. In Molecular Cloning, a Laboratory Manual, 2nd Edn, pp. 1·2–1·105. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.Google Scholar
Sawada, T., Sato, K. & Sato, S. (1969). Studies on the skin test antigen FST for immunodiagnosis of filariasis. Electrophoretic analysis and fractionation of antigen, FST. Japanese Journal of Experimental Medicine 39, 427–33.Google Scholar
Schoner, R. G., Ellis, L. F. & Schoner, B. E. (1985). Isolation and purification of protein granules from E. coli cells over producing bovine growth hormone. Bio/Technology 3, 151.Google Scholar
Tanaka, H., Fujita, K., Sasa, M., Shichinohe, K., Asai, Y. & Kurokawa, K. (1970). Cross-reactions among filarial species in haemagglutination test. Japanese Journal of Experimental Medicine 40, 6777.Google Scholar
Theodore, J. G. & Kaliraj, P. (1990). Isolation, purification and characterization of surface antigens of the bovine filarial parasite S. digitata for the immunodiagnosis of bancroftian filariasis. Journal of Helminthology 64, 105–14.CrossRefGoogle Scholar
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedure and applications. Proceedings of the National Academy of Sciences, USA 75, 4350–4.CrossRefGoogle Scholar
Weil, G. J., Jain, D. c.Santhanam, S., Malhotra, A., Kumar, H., Sethumadhavan, K. V. P., Liftis, F. & Ghosh, T. K. (1987). A monoclonal antibody based enzyme immunoassay for detecting parasite antigenemia in bancroftian filariasis. Journal of Infectious Diseases 156, 350–5.Google Scholar
Weil, G. J. (1990). Parasite antigenemia in lymphatic filariasis. Experimental Parasitology 71, 353–6.Google Scholar
Weiss, N., Hussain, R. & Ottesen, E. A. (1982). IgE antibodies are more species-specific than IgG antibodies in human onchocerciasis and lymphatic filariasis. Immunology 45, 129–37.Google ScholarPubMed
Werner, C, Higashi, G. I., Yates, J. A. & Rajan, T. V. (1989). Differential recognition of two cloned Brugia malayi antigens by antibody class. Molecular and Biochemical Parasitology 35, 209–18.CrossRefGoogle ScholarPubMed
Young, R. A. & Davis, R. W. (1983). Efficient isolation of genes by using antibody probes. Proceedings of the National Academy of Sciences, USA 80, 1194–8.CrossRefGoogle ScholarPubMed