Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T19:07:07.067Z Has data issue: false hasContentIssue false

Cloning of the rDNA repeat unit from a British entomopathogenic nematode (Steinernematidae) and its potential for species identification

Published online by Cambridge University Press:  06 April 2009

A. P. Reid
Affiliation:
Imperial College of Science, Technology and Medicine, Department of Biology, Silwood Park, Ascot, Berks SL5 7PY
W. M. Hominick
Affiliation:
Imperial College of Science, Technology and Medicine, Department of Biology, Silwood Park, Ascot, Berks SL5 7PY

Summary

The entire ribosomal DNA repeat unit of a steinernematid species (Nashes isolate) was cloned as three separate EcoR I fragments in the plasmid pUC18. An equimolar cocktail of these three clones was used to identify Steinernema species on Southern blots as each species displays its own unique restriction fragment length polymorphisms. The clones also identified two new species isolated in a soil survey of coastal regions of Britain. One of the clones (pSn4.0) can detect length heterogeneities in the rDNA repeat unit of various isolates of some of the species, particularly the most common in the United Kingdom, S. feltiae. These differences in the rDNA repeat unit length remained constant over several years for one isolate of S. feltiae, but were different for each of the geographical isolates studied to date.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bedding, R. A., Molyneux, A. S. & Akhurst, R. J. (1983). Heterorhabditis spp., Neoaplectana spp. and Steinernema kraussei: interspecific and intraspecific differences in infectivity to insects. Experimental Parasitology 55, 249–57.Google Scholar
Blair, D. & McManus, D. P. (1989). Restriction enzyme mapping of ribosomal DNA can distinguish between fasciolid (liver fluke) species. Molecular and Biochemical Parasitology 36, 201–8.Google Scholar
Brown, W. M., George, M. Jr, & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences, USA 76, 1967–71.Google Scholar
Chapco, W., Ashton, N. W., Martel, R. K. B. & Antonishyn, N. (1992). A feasibility study of the use of random amplified polymorphic DNA in the population genetics and systematics of grasshoppers. Genome 35, 569–74.Google Scholar
Chung, C. C, Niemela, S. L. & Miller, R. H. (1989). One step preparation of competent E. coli: transformation and storage in the same solution. Proceedings of the National Academy of Sciences, USA 86, 2172–5.Google Scholar
Ehlers, R.-U., Deseo, K. V. & Stackebrandt, E. (1991). Identification of Steinernema spp. (Nematoda) and their symbiotic bacteria Xenorhabdus spp. from Italian and German soils. Nematologica 37, 360–6.Google Scholar
Files, J. G. & Hirsh, D. (1981). Ribosomal DNA of Caenorhabditis elegans. Journal of Molecular Biology 149, 223–40.Google Scholar
Hominick, W. M. & Briscoe, B. R. (1990). Occurrence of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in British soils. Parasitology 100, 295302.Google Scholar
Hominick, W. M. & Reid, A. P. (1990). Perspectives on entomopathogenic nematology. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. & Kaya, H. K.), pp. 327345. Boca Raton, Florida:CRC Press.Google Scholar
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Publications.Google Scholar
Mracek, Z. (1977). Steinernema kraussei, a parasite of the body cavity of the sawfly, Cephaleia abietis, in Czechoslovakia. Journal of Invertebrate Pathology 30, 8794.Google Scholar
Poinar, G. O. Jr. (1990). Taxonomy and biology of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. & Kaya, H. K.), pp. 2361.Boca Raton, Florida: CRC Press.Google Scholar
Radice, A. D., Powers, T. O., Sandall, L. J. & Riggs, R. D. (1988). Comparisons of mitochondrial DNA from the sibling species Heterodera glycines and H. schachtii. Journal of Nematology 20, 433–50.Google Scholar
Reid, A. P. & Hominick, W. M. (1992). Restriction fragment length polymorphisms within the ribosomal DNA repeat unit of British entomopathogenic nematodes (Rhabditida: Steinernematidae). Parasitology 105, 317–23.Google Scholar
Reid, A. P. & Hominick, W. M. (1993). Isolation and use of a species-specific clone for the identification of the rhabditid entomopathogenic nematode Steinernema feltiae (Filipjev, 1934). Fundamental and Applied Nematology 16, 115–20.Google Scholar
Rollinson, D., Walker, T. K. & Simpson, A. J. G. (1986). The application of recombinant DNA technology to the problems of helminth identification. Parasitology 91 (Suppl.), S53–S71.Google Scholar
Sha, C. Y. (1985). A comparative analysis of esterase of the insect parasitic nematodes of the genus Neoaplectana. Acta Zoologica Sinica 10, 246–9.Google Scholar
Simpson, A. J. G., Dame, J. B., Lewis, F. A. & McCutchan, T. F. (1984). The arrangement of ribosomal RNA genes in Schistosoma mansoni. Identification of polymorphic structural variants. European Journal of Biochemistry 139, 41–5.Google Scholar
Walker, T. K., Simpson, A. J. G. & Rollinson, D. (1989). Differentiation of Schistosoma mansoni from S. rodhaini using cloned DNA probes. Parasitology 98, 7580.Google Scholar
Welsh, J., Petersen, C. & McClelland, M. (1991). Polymorphisms generated by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucleic Acids Research 19, 303–6.Google Scholar
Williams, J. K. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–5.Google Scholar