Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T11:16:13.008Z Has data issue: false hasContentIssue false

Characterization of Trypanosoma congolense serodemes in stocks isolated from Chipata District, Zambia

Published online by Cambridge University Press:  06 April 2009

I. A. Frame
Affiliation:
Centre for Tropical Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG
C. A. Ross
Affiliation:
Centre for Tropical Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG
A. G. Luckins
Affiliation:
Centre for Tropical Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG

Extract

Six stocks of Trypanosoma congolense were cloned from 17 stocks isolated from Eastern Zambia and used to initiate insect-form in vitro cultures producing metacyclic trypanosomes. Serological assays were then developed using these in vitro-derived metacyclics as a reference collection of antigens. Monoclonal antibodies recognized 8 metacyclic variable antigen types (M-VATs) of one stock, T. congolense TREU 1885, representing 70–80% of that stock's M-VAT repertoire, and in an indirect fluorescent antibody test (IFAT) there were no cross-reactions between them and the metacyclic trypanosomes of the other 5 stocks. Cross-protection assays between the 6 stocks in mice showed that the stocks cultured in vitro were serologically distinct. In order to facilitate serological typing for serodeme characterization, an IFAT was developed using formalin-fixed metacyclic trypanosomes to identify VAT specific immune responses using 21 day post-infection antisera. The cultured stocks reacted only with their homologous antisera thus confirming the results obtained in the cross-protection assays. No cross-reactions were observed with the 6 cloned stocks and antisera against the 11 stocks of T. congolense isolated in the same area at the same time suggesting that these stocks were different from the reference collection of cultured metacyclics. Hence, at least 7 serodemes of T. congolense have been identified from the 17 stocks isolated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akol, G. W. O. & Murray, M. (1983). Trypanosoma congolense: susceptibility of cattle to cyclical challenge. Experimental Parasitology 55, 386–93.CrossRefGoogle ScholarPubMed
Anon (1978). Proposals for nomenclature of salivarian trypanosomes and for the maintenance of reference collections. Bulletin of the World Health Organization 56, 467–80.Google Scholar
Barry, J., Crowe, J. S. & Vickerman, K. (1983). Instability of the Trypanosoma rhodesiense metacyclic variable antigen repertoire. Nature, London 306, 699701.CrossRefGoogle ScholarPubMed
Bevan, L.. E. W. (1928). A method of inoculating cattle against trypanosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 22, 147–56.CrossRefGoogle Scholar
Bevan, L. E. W. (1936). Notes on immunity in trypanosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 30, 199206.CrossRefGoogle Scholar
Bourn, D. & Scott, M. (1978). The successful use of work oxen in agricultural development of tsetse infested land in Ethiopia. Tropical Animal Health and Production 10, 191203.CrossRefGoogle ScholarPubMed
Crowe, J. S., Barry, J. D., Luckins, A. G., Ross, C. A. & Vickerman, K. (1983). All metacyclic variable antigen types of Trypanosoma congolense identified using monoclonal antibodies. Nature, London 306, 389–91.CrossRefGoogle ScholarPubMed
Dar, F. K., Paris, J. & Wilson, A. J. (1973). Serological studies on trypanosomiasis in East Africa. IV. Comparison of antigenic types of Trypanosoma vivax organisms. Annals of Tropical Medicine and Parasitology 67, 319–29.Google ScholarPubMed
Goedbloed, E., Ligthart, G. S., Minter, D. M., Wilson, A. J., Dar, F. K. & Paris, J. (1973). Serological studies of trypanosomiasis in East Africa. II. Comparisons of antigenic types of Trypanosoma brucei sub-group organisms isolated from wild tsetse flies. Annals of Tropical Medicine and Parasitology 67, 3143.CrossRefGoogle Scholar
Gray, M. A., Cunningham, L., Gardiner, P. R., Taylor, A. M. & Luckins, A. G. (1981). Cultivation of infective forms of Trypanosoma congolense from trypanosomes in the proboscis of Glossina morsitans. Parasitology 82, 8195.CrossRefGoogle ScholarPubMed
Gray, M. A., Ross, C. A., Taylor, A. M. & Luckins, A. G. (1984). In vitro cultivation of Trypanosoma congolense: the production of infective metacyclic trypanosomes in cultures initiated from cloned stocks. Acta Tropica 41, 343–53.Google ScholarPubMed
Harley, J. M. B. & Wilson, A. J. (1968). A comparison between Glossina morsitans, G. pallidipes and G. fuscipes as vectors of trypanosomes of the Trypanosoma congolense group: The proportions infected experimentally and the numbers of infective organisms extruded during feeding. Annals of Tropica Medicine and Parasitology 62, 178–87.CrossRefGoogle Scholar
Jenni, L. (1977). Comparisons of antigenic types of Trypanosoma (T.) brucei strains transmitted by Glossina m. morsitans. Acta Tropica 34, 3541.Google ScholarPubMed
Jenni, L., Marti, S., Schweizer, J., Betschart, B., Le Page, R. W. F., Wells, J. M., Tait, A., Pandavoine, P., Pays, E. & Steinert, L. M. (1986). Hybrid formation between African trypanosomes during cyclical transmission. Nature, London 322, 173–5.CrossRefGoogle ScholarPubMed
Le Ray, D., Barry, J. D. & Vickerman, K. (1978). Antigenic heterogeneity of metacyclic forms of Trypanosoma brucei. Nature, London 273, 300–2.Google ScholarPubMed
Luckins, A. G. & Gray, A. R. (1983). Interference with anti-trypanosome immune responses in rabbits infected with cyclically-transmitted Trypanosoma congolense. Parasite Immunology 5, 547–56.CrossRefGoogle ScholarPubMed
Luckins, A. G., Frame, I. A., Gray, M. A., Crowe, J. S. & Ross, C. A. (1986). Analysis of trypanosome variable antigen types in cultures of metacyclics and mammalian forms of Trypanosoma congolense. Parasitology 93, 99109.CrossRefGoogle ScholarPubMed
Masake, R. A., Nantulya, V. M., Musoke, A. J., Moloo, S. K. & Nguli, K. (1987). Characterization of Trypanosoma congolense serodemes in stocks isolated from cattle introduced onto a ranch in Kilifi, Kenya. Parasitology 94, 349–57.CrossRefGoogle ScholarPubMed
Murray, M. & Gray, A. R. (1984). The current situation on animal trypanosomiasis in Africa. Preventive Veterinary Medicine 2, 2330.CrossRefGoogle Scholar
Murray, M., Barry, J. D., Morrison, W. I., Williams, R. O., Hirumi, H. & Rovis, L. (1979). Part I. A review of the prospects for vaccination in African trypanosomiasis. World Animal Review 32, 913.Google Scholar
Nantulya, V. M., Musoke, A. J., Rurangirwa, F. R. & Moloo, S. K. (1984). Resistance of cattle to tsetse-transmitted challenge with Trypanosoma brucei or Trypanosoma congolense after spontaneous recovery from syringe passaged infections. Infection and Immunity 43, 735–8.CrossRefGoogle ScholarPubMed
Paling, R. W., Leak, S. G. A., Katende, J., Kamunya, G. & Moloo, S. K. (1987). Epidemiology of animal trypanosomiasis on a cattle ranch in Kilifi, Kenya. Acta Tropica 44, 6782.Google ScholarPubMed
Pearson, T. W., Pinder, M., Roelants, G. E., Kar, S. K., Lundin, L. B., Mayor-Withey, K. S. & Hewett, R. W. (1980). Methods for derivation and detection of anti-parasite monoclonal antibodies. Journal of Immunological Methods 34, 141–54.CrossRefGoogle ScholarPubMed
Turner, C. M. R., Barry, J. D., Maudlin, I. & Vickerman, K. (1988). An estimate of the size of the metacyclic variable antigen repertoire of Trypanosoma brucei rhodesiense. Parasitology 97, 269–76.Google ScholarPubMed
Van Der Ploeg, L. H. T., Valerio, D., De Lange, T., Bernards, A., Borst, P. & Grosveld, G. F. (1982). An analysis of cosmid clones of nuclear DNA from Trypanosoma brucei shows that the genes for variant surface glycoproteins are clustered in the genome. Nucleic Acids Research 10, 5905–23.CrossRefGoogle ScholarPubMed
Vickerman, K. & Barry, J. D. (1982). African trypanosomiasis. In Immunology of Parasitic Infections, 2nd Edn. (ed. Cohen, S. & Warren, K. S.), pp. 204260. Oxford: Blackwell Scientific Publications.Google Scholar
Whitelaw, D. D., Bell, I. R., Holmes, P. H., Moloo, S. K., Hirumi, H., Urquhart, G. M. & Murray, M. (1986). Isometamidium chloride prophylaxis against Trypanosoma congolense challenge and the development of immune responses in cattle. The Veterinary Record 118, 722–6.Google Scholar
Whiteside, E. F. (1962). The control of cattle trypanosomiasis with drugs in Kenya: methods and costs. East African Agricultural and Forestry Journal 2, 6773.CrossRefGoogle Scholar
Wilson, A. J. (1971). Immunological aspects of bovine trypanosomiasis. III. Patterns in the development of immunity. Tropical Animal Health and Production 3, 1422.CrossRefGoogle Scholar
Wilson, A. J., Dar, F. K. & Paris, J. (1973). Serological studies on trypanosomiasis in East Africa. III. Comparison of antigenic types of Trypanosoma congolense organisms isolated from wild flies. Annals of Tropical Medicine and Parasitology 67, 313–17.CrossRefGoogle Scholar
Wilson, A. J., Le Roux, J. G., Paris, J., Davidson, C. R. & Gray, A. R. (1975). Observations on a herd of beef cattle maintained in a tsetse area. I. Assessment of chemotherapy as a method for the control of trypanosomiasis. Tropical Animal Health and Production 7, 187–99.Google Scholar
Wilson, A. J., Paris, J., Luckins, A. G., Dar, F. K. & Gray, A. R. (1976). Observations on a herd of beef cattle maintained in a tsetse area. II. Assessment of the development of immunity in association with trypanocidal drug treatment. Tropical Animal Health and Production 8, 112.CrossRefGoogle Scholar