Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-17T02:20:20.444Z Has data issue: false hasContentIssue false

Characterization of the novel Trypanosoma brucei inosine 5′-monophosphate dehydrogenase

Published online by Cambridge University Press:  01 February 2013

TOMOAKI BESSHO
Affiliation:
Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
SHOKO MORII
Affiliation:
Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
TOSHIHIDE KUSUMOTO
Affiliation:
Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
TAKAHIRO SHINOHARA
Affiliation:
Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
MASANORI NODA
Affiliation:
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
SUSUMU UCHIYAMA
Affiliation:
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
SATOSHI SHUTO
Affiliation:
Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Nishi 6, Kita 12, Kita-ku, Sapporo 060-0812, Japan
SHIGENORI NISHIMURA
Affiliation:
Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
APPOLINAIRE DJIKENG
Affiliation:
Biosciences eastern and central Africa (BecA) Hub at the International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya The J Craig Venter Institute (JCVI), Rockville, MD 20876, USA
MICHAEL DUSZENKO
Affiliation:
Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Straße 4, 72076 Tübingen, Germany
SAMUEL K. MARTIN
Affiliation:
Retired from United States Army Medical Research Unit-Kenya, Unit 64109, APO AE 09831-64109
TAKASHI INUI*
Affiliation:
Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
KILUNGA B. KUBATA*
Affiliation:
AU/NEPAD Agency Regional Office for Eastern and Central Africa, P.O. BOX 13601-00800, Nairobi, Kenya
*
*Corresponding authors: Dr Takashi Inui, Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan. Tel: +81-72-254-9473, Fax: +81-72-254-9921. E-mail: [email protected]
*Fr Kilunga B. Kubata, AU/NEPAD Agency Regional Office for Eastern and Central Africa, P.O. BOX 13601-00800, Nairobi, Kenya. Tel: +254 733 665210/ +254 737 966687. E-mail: [email protected] / [email protected]

Summary

There is an alarming rate of human African trypanosomiasis recrudescence in many parts of sub-Saharan Africa. Yet, the disease has no successful chemotherapy. Trypanosoma lacks the enzymatic machinery for the de novo synthesis of purine nucleotides, and is critically dependent on salvage mechanisms. Inosine 5′-monophosphate dehydrogenase (IMPDH) is responsible for the rate-limiting step in guanine nucleotide metabolism. Here, we characterize recombinant Trypanosoma brucei IMPDH (TbIMPDH) to investigate the enzymatic differences between TbIMPDH and host IMPDH. Size-exclusion chromatography and analytical ultracentrifugation sedimentation velocity experiments reveal that TbIMPDH forms a heptamer, different from type 1 and 2 mammalian tetrameric IMPDHs. Kinetic analysis reveals calculated Km values of 30 and 1300 μm for IMP and NAD, respectively. The obtained Km value of TbIMPDH for NAD is approximately 20–200-fold higher than that of mammalian enzymes and indicative of a different NAD binding mode between trypanosomal and mammalian IMPDHs. Inhibition studies show Ki values of 3·2 μm, 21 nM and 3·3 nM for ribavirin 5′-monophosphate, mycophenolic acid and mizoribine 5′-monophosphate, respectively. Our results show that TbIMPDH is different from its mammalian counterpart and thus may be a good target for further studies on anti-trypanosomal drugs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

World Health Organization (2007). African trypanosomiasis (sleeping sickness), Fact sheet No. 259. WHO, Geneva, Switzerland.Google Scholar
Barrett, M. P., Boykin, D. W., Brun, R. and Tidwell, R. R. (2007). Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. British Journal of Pharmacology 152, 11551171. doi: 10.1038/sj.bjp.0707354.CrossRefGoogle ScholarPubMed
Bilengue, C. M., Meso, V. K., Louis, F. J. and Lucas, P. (2001). Human African trypanosomiasis in the urban milieu: the example of Kinshasa, Democratic Republic of the Congo, in 1998 and 1999. Médecine tropicale: revue du Corps de santé colonial 61, 445448.Google ScholarPubMed
Burri, C. and Brun, R. (2003). Eflornithine for the treatment of human African trypanosomiasis. Parasitology Research 90 (Suppl. 1), S49S52. doi: 10.1007/s00436-002-0766-5.CrossRefGoogle ScholarPubMed
Colby, T. D., Vanderveen, K., Strickler, M. D., Markham, G. D. and Goldstein, B. M. (1999). Crystal structure of human type II inosine monophosphate dehydrogenase: implications for ligand binding and drug design. Proceedings of the National Academy of Sciences USA 96, 35313536. doi: 10.1073/pnas.96.7.3531.CrossRefGoogle ScholarPubMed
Crotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y., Hong, Z., Andino, R. and Cameron, C. E. (2000). The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nature Medicine 6, 13751379. doi: 10.1038/82191.CrossRefGoogle ScholarPubMed
Digits, J. A. and Hedstrom, L. (1999 a). Kinetic mechanism of Tritrichomonas foetus inosine 5′-monophosphate dehydrogenase. Biochemistry 38, 22952306. doi: 10.1021/bi982305k.CrossRefGoogle ScholarPubMed
Digits, J. A. and Hedstrom, L. (1999 b). Species-specific inhibition of inosine 5′-monophosphate dehydrogenase by mycophenolic acid. Biochemistry 38, 1538815397. doi: 10.1021/bi991558q.CrossRefGoogle ScholarPubMed
Dobie, F., Berg, A., Boitz, J. M. and Jardim, A. (2007). Kinetic characterization of inosine monophosphate dehydrogenase of Leishmania donovani. Molecular and Biochemical Parasitology 152, 1121. doi: 10.1016/j.molbiopara.2006.11.007.CrossRefGoogle ScholarPubMed
Doua, F. and Yapo, F. B. (1993). Human trypanosomiasis in the Ivory Coast: therapy and problems. Acta Tropica 54, 163168. doi: 10.1016/0001-706X(93)90090-X.CrossRefGoogle ScholarPubMed
Gan, L., Petsko, G. A. and Hedstrom, L. (2002). Crystal structure of a ternary complex of Tritrichomonas foetus inosine 5′-monophosphate dehydrogenase: NAD+ orients the active site loop for catalysis. Biochemistry 41, 1330913317. doi: 10.1021/bi0203785.CrossRefGoogle ScholarPubMed
Gan, L., Seyedsayamdost, M. R., Shuto, S., Matsuda, A., Petsko, G. A. and Hedstrom, L. (2003). The immunosuppressive agent mizoribine monophosphate forms a transition state analogue complex with inosine monophosphate dehydrogenase. Biochemistry 42, 857863. doi: 10.1021/bi0271401.CrossRefGoogle ScholarPubMed
Gensburger, O., Picard, N. and Marquet, P. (2009). Effect of mycophenolate acyl-glucuronide on human recombinant type 2 inosine monophosphate dehydrogenase. Clinical Chemistry 55, 986993. doi: 10.1373/clinchem.2008.113936.CrossRefGoogle ScholarPubMed
Gutteridge, W. E. (1985). Existing chemotherapy and its limitations. British Medical Bulletin 41, 162168.CrossRefGoogle ScholarPubMed
Hager, P. W., Collart, F. R., Huberman, E. and Mitchell, B. S. (1995). Recombinant human inosine monophosphate dehydrogenase type I and type II proteins. Purification and characterization of inhibitor binding. Biochemical Pharmacology 49, 13231329. doi: 0006-2952(95)00026-V [pii].CrossRefGoogle ScholarPubMed
Hong, Z. and Cameron, C. E. (2002). Pleiotropic mechanisms of ribavirin antiviral activities. Progress in Drug Research 59, 4169.CrossRefGoogle ScholarPubMed
Iten, M., Mett, H., Evans, A., Enyaru, J. C., Brun, R. and Kaminsky, R. (1997). Alterations in ornithine decarboxylase characteristics account for tolerance of Trypanosoma brucei rhodesiense to D,L-alpha-difluoromethylornithine. Antimicrobial Agents and Chemotherapy 41(9), 19221925.CrossRefGoogle ScholarPubMed
Jayaram, H. N., Dion, R. L., Glazer, R. I., Johns, D. G., Robins, R. K., Srivastava, P. C. and Cooney, D. A. (1982). Initial studies on the mechanism of action of a new oncolytic thiazole nucleoside, 2-beta-D-ribofuranosylthiazole-4-carboxamide (NSC 286193). Biochemical Pharmacology 31, 23712380. doi: 10.1016/0006-2952(82)90532-9.CrossRefGoogle ScholarPubMed
Kerr, K. M. and Hedstrom, L. (1997). The roles of conserved carboxylate residues in IMP dehydrogenase and identification of a transition state analog. Biochemistry 36, 1336513373. doi: 10.1021/bi9714161.CrossRefGoogle ScholarPubMed
Kharbanda, S. M., Sherman, M. L. and Kufe, D. W. (1990). Effects of tiazofurin on guanine nucleotide binding regulatory proteins in HL-60 cells. Blood 75, 583588.CrossRefGoogle ScholarPubMed
Kirubakaran, S., Gorla, S. K., Sharling, L., Zhang, M., Liu, X., Ray, S. S., Macpherson, I. S., Striepen, B., Hedstrom, L. and Cuny, G. D. (2012). Structure-activity relationship study of selective benzimidazole-based inhibitors of Cryptosporidium parvum IMPDH. Bioorganic and Medicinal Chemistry Letters 22, 19851988. doi: 10.1016/j.bmcl.2012.01.029.CrossRefGoogle ScholarPubMed
Kubata, B. K., Martin, S. K. and Milhous, W. K. (2008). Artemisinins in the clinical and veterinary management of kinetoplastid infections. In International Patent (ed. Organization, T. W. I. P.).Google Scholar
Kubata, B. K., Nagamune, K., Murakami, N., Merkel, P., Kabututu, Z., Martin, S. K., Kalulu, T. M., Huq, M., Yoshida, M., Ohnishi-Kameyama, M., Kinoshita, T., Duszenko, M. and Urade, Y. (2005). Kola acuminata proanthocyanidins: a class of anti-trypanosomal compounds effective against Trypanosoma brucei. International Journal for Parasitology 35, 91103. doi: 10.1016/j.ijpara.2004.10.019.CrossRefGoogle ScholarPubMed
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948.CrossRefGoogle ScholarPubMed
Maag, D., Castro, C., Hong, Z. and Cameron, C. E. (2001). Hepatitis C virus RNA-dependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin. Journal of Biological Chemistry 276, 4609446098. doi: 10.1074/jbc.C100349200.CrossRefGoogle ScholarPubMed
Mandanas, R. A., Leibowitz, D. S., Gharehbaghi, K., Tauchi, T., Burgess, G. S., Miyazawa, K., Jayaram, H. N. and Boswell, H. S. (1993). Role of p21 RAS in p210 bcr-abl transformation of murine myeloid cells. Blood 82, 18381847.CrossRefGoogle ScholarPubMed
Manzoli, L., Billi, A. M., Gilmour, R. S., Martelli, A. M., Matteucci, A., Rubbini, S., Weber, G. and Cocco, L. (1995). Phosphoinositide signaling in nuclei of Friend cells: tiazofurin down-regulates phospholipase C beta 1. Cancer Research 55, 29782980.Google ScholarPubMed
Markham, G. D., Bock, C. L. and Schalk-Hihi, C. (1999). Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase. Biochemistry 38, 44334440. doi: 10.1021/bi9829579.CrossRefGoogle ScholarPubMed
Michels, P. A., Bringaud, F., Herman, M. and Hannaert, V. (2006). Metabolic functions of glycosomes in trypanosomatids. Biochimica Biophysica Acta 1763, 14631477. doi: 10.1016/j.bbamcr.2006.08.019.CrossRefGoogle ScholarPubMed
Mortimer, S. E. and Hedstrom, L. (2005). Autosomal dominant retinitis pigmentosa mutations in inosine 5′-monophosphate dehydrogenase type I disrupt nucleic acid binding. Biochemical Journal 390, 4147. doi: 10.1042/BJ20042051.CrossRefGoogle ScholarPubMed
Nishio, M., Kamiya, Y., Mizushima, T., Wakatsuki, S., Sasakawa, H., Yamamoto, K., Uchiyama, S., Noda, M., McKay, A. R., Fukui, K., Hauri, H. P. and Kato, K. (2010). Structural basis for the cooperative interplay between the two causative gene products of combined factor V and factor VIII deficiency. Proceedings of the National Academy of Sciences, USA 107, 40344039.CrossRefGoogle ScholarPubMed
Oda, M., Uchiyama, S., Noda, M., Nishi, Y., Koga, M., Mayanagi, K., Robinson, C. V., Fukui, K., Kobayashi, Y., Morikawa, K. and Azuma, T. (2009). Effects of antibody affinity and antigen valence on molecular forms of immune complexes. Molecular Immunology 47, 357364.CrossRefGoogle ScholarPubMed
Parandoosh, Z., Robins, R. K., Belei, M. and Rubalcava, B. (1989). Tiazofurin and selenazofurin induce depression of cGMP and phosphatidylinositol pathway in L1210 leukemia cells. Biochemical and Biophysical Research Communications 164, 869874. doi: 10.1016/0006-291X(89)91539-8.CrossRefGoogle ScholarPubMed
Parandoosh, Z., Rubalcava, B., Matsumoto, S. S., Jolley, W. B. and Robins, R. K. (1990). Changes in diacylglycerol and cyclic GMP during the differentiation of human myeloid leukemia K562 cells. Life Sciences 46, 315320.CrossRefGoogle ScholarPubMed
Patterson, J. L. and Fernandez-Larsson, R. (1990). Molecular mechanisms of action of ribavirin. Reviews of Infectious Diseases 12, 11391146.CrossRefGoogle ScholarPubMed
Pepin, J. and Milord, F. (1994). The treatment of human African trypanosomiasis. Advances in Parasitology 33, 147.CrossRefGoogle ScholarPubMed
Poynard, T., Marcellin, P., Lee, S. S., Niederau, C., Minuk, G. S., Ideo, G., Bain, V., Heathcote, J., Zeuzem, S., Trepo, C. and Albrecht, J. (1998). Randomised trial of interferon alpha2b plus ribavirin for 48 weeks or for 24 weeks versus interferon alpha2b plus placebo for 48 weeks for treatment of chronic infection with hepatitis C virus. International Hepatitis Interventional Therapy Group (IHIT). Lancet 352, 14261432. doi:10.1016/S0140-6736(98)07124-4.CrossRefGoogle ScholarPubMed
Ross, C. A. and Sutherland, D. V. (1997). Drug resistance in trypanosomatids. In Trypanosomiasis and Leishmaniasis: Biology and Control (ed. Hide, G., Mottram, J. C., Coombs, G. H. and Holmes, P. H.), pp. 259269. CAB International, Wallingford, UK.Google Scholar
Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophysical Journal 78, 16061619.CrossRefGoogle ScholarPubMed
Shuto, S., Haramuishi, K., Fukuoka, M. and Matsuda, A. (2000). Synthesis of sugar-modified analogs of bredinin (mizoribine), a clinically useful immunosuppressant, by a novel photochemical imidazole ring-cleavage reaction as the key step 1. Journal of the Chemical Society, Perkin Transactions 1 21, 36033609.CrossRefGoogle Scholar
Smith, D. H., Pepin, J. and Stich, A. H. (1998). Human African trypanosomiasis: an emerging public health crisis. British Medical Bulletin 54(2), 341355.CrossRefGoogle ScholarPubMed
Szekeres, T., Fritzer, M., Pillwein, K., Felzmann, T. and Chiba, P. (1992). Cell cycle dependent regulation of IMP dehydrogenase activity and effect of tiazofurin. Life Sciences 51, 13091315.CrossRefGoogle ScholarPubMed
Umejiego, N. N., Li, C., Riera, T., Hedstrom, L. and Striepen, B. (2004). Cryptosporidium parvum IMP dehydrogenase: identification of functional, structural, and dynamic properties that can be exploited for drug design. Journal of Biological Chemistry 279, 4032040327.CrossRefGoogle ScholarPubMed
Verham, R., Meek, T. D., Hedstrom, L. and Wang, C. C. (1987). Purification, characterization, and kinetic analysis of inosine 5′-monophosphate dehydrogenase of Tritrichomonas foetus. Molecular and Biochemical Parasitology 24, 112. doi:10.1016/0166-6851(87)90110-1.CrossRefGoogle ScholarPubMed
Vertommen, D., Van Roy, J., Szikora, J. P., Rider, M. H., Michels, P. A. and Opperdoes, F. R. (2008). Differential expression of glycosomal and mitochondrial proteins in the two major life-cycle stages of Trypanosoma brucei. Molecular and Biochemical Parasitology 158, 189201. doi:S0166–6851(07)00344-1 [pii] 10.1016/j.molbiopara.2007.12.008.CrossRefGoogle ScholarPubMed
Wang, W. and Hedstrom, L. (1997). Kinetic mechanism of human inosine 5′-monophosphate dehydrogenase type II: random addition of substrates and ordered release of products. Biochemistry 36, 84798483. doi:10.1021/bi970226n.CrossRefGoogle ScholarPubMed
Weber, G., Prajda, N., Abonyi, M., Look, K. Y. and Tricot, G. (1996). Tiazofurin: molecular and clinical action. Anticancer Research 16, 33133322.Google ScholarPubMed
Welburn, S. C. and Odiit, M. (2002). Recent developments in human African trypanosomiasis. Current Opinion in Infectious Diseases 15, 477484.CrossRefGoogle ScholarPubMed
Wilson, K., Berens, R. L., Sifri, C. D. and Ullman, B. (1994). Amplification of the inosinate dehydrogenase gene in Trypanosoma brucei gambiense due to an increase in chromosome copy number. Journal of Biological Chemistry 269, 2897928987.CrossRefGoogle Scholar
Witkowski, J. T., Robins, R. K., Sidwell, R. W. and Simon, L. N. (1972). Design, synthesis, and broad spectrum antiviral activity of 1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. Journal of Medicinal Chemistry 15, 11501154.CrossRefGoogle Scholar
Wu, J. C. (1994). Perspectives in drug discovery and design. In Mycophenolate mofetil: Molecular Mechanisms of Action, Vol. 2. pp. 185204. Leiden, the Netherlands.Google Scholar
Zhang, R., Evans, G., Rotella, F. J., Westbrook, E. M., Beno, D., Huberman, E., Joachimiak, A. and Collart, F. R. (1999). Characteristics and crystal structure of bacterial inosine-5′-monophosphate dehydrogenase. Biochemistry 38, 46914700. doi:10.1021/bi982858v.CrossRefGoogle ScholarPubMed
Supplementary material: File

Bessho Supplementary Material

Appendix

Download Bessho Supplementary Material(File)
File 252.4 KB
Supplementary material: File

Bessho Supplementary Material

Appendix

Download Bessho Supplementary Material(File)
File 252.4 KB
Supplementary material: File

Bessho Supplementary Material

Appendix

Download Bessho Supplementary Material(File)
File 74.2 KB
Supplementary material: File

Bessho Supplementary Material

Appendix

Download Bessho Supplementary Material(File)
File 74.2 KB