Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Bessho, Tomoaki
Okada, Tetsuya
Kimura, Chihiro
Shinohara, Takahiro
Tomiyama, Ai
Imamura, Akira
Kuwamura, Mitsuru
Nishimura, Kazuhiko
Fujimori, Ko
Shuto, Satoshi
Ishibashi, Osamu
Kubata, Bruno Kilunga
Inui, Takashi
and
Acosta-Serrano, Alvaro
2016.
Novel Characteristics of Trypanosoma brucei Guanosine 5'-monophosphate Reductase Distinct from Host Animals.
PLOS Neglected Tropical Diseases,
Vol. 10,
Issue. 1,
p.
e0004339.
Boitz, Jan M.
Jardim, Armando
and
Ullman, Buddy
2016.
GMP reductase and genetic uncoupling of adenylate and guanylate metabolism in Leishmania donovani parasites.
Molecular and Biochemical Parasitology,
Vol. 208,
Issue. 2,
p.
74.
Suganuma, Keisuke
Sarwono, Albertus Eka Yudistira
Mitsuhashi, Shinya
Jąkalski, Marcin
Okada, Tadashi
Nthatisi, Molefe
Yamagishi, Junya
Ubukata, Makoto
and
Inoue, Noboru
2016.
Mycophenolic Acid and Its Derivatives as Potential Chemotherapeutic Agents Targeting Inosine Monophosphate Dehydrogenase in Trypanosoma congolense.
Antimicrobial Agents and Chemotherapy,
Vol. 60,
Issue. 7,
p.
4391.
Zulfiqar, Bilal
Jones, Amy
Sykes, Melissa
Shelper, Todd
Davis, Rohan
and
Avery, Vicky
2017.
Screening a Natural Product-Based Library against Kinetoplastid Parasites.
Molecules,
Vol. 22,
Issue. 10,
p.
1715.
Imamura, Akira
Okada, Tetsuya
Mase, Hikaru
Otani, Takuya
Kobayashi, Tomoka
Tamura, Manatsu
Kubata, Bruno Kilunga
Inoue, Katsuaki
Rambo, Robert P.
Uchiyama, Susumu
Ishii, Kentaro
Nishimura, Shigenori
and
Inui, Takashi
2020.
Allosteric regulation accompanied by oligomeric state changes of Trypanosoma brucei GMP reductase through cystathionine-β-synthase domain.
Nature Communications,
Vol. 11,
Issue. 1,
Zhang, Naiwen
Jiang, Ning
Zhang, Kai
Zheng, Lili
Zhang, Di
Sang, Xiaoyu
Feng, Ying
Chen, Ran
Yang, Na
Wang, Xinyi
Cheng, Zhongyi
Suo, Xun
Lun, Zhaorong
and
Chen, Qijun
2020.
Landscapes of Protein Posttranslational Modifications of African Trypanosoma Parasites.
iScience,
Vol. 23,
Issue. 5,
p.
101074.
Nass, Karol
Redecke, Lars
Perbandt, M.
Yefanov, O.
Klinge, M.
Koopmann, R.
Stellato, F.
Gabdulkhakov, A.
Schönherr, R.
Rehders, D.
Lahey-Rudolph, J. M.
Aquila, A.
Barty, A.
Basu, S.
Doak, R. B.
Duden, R.
Frank, M.
Fromme, R.
Kassemeyer, S.
Katona, G.
Kirian, R.
Liu, H.
Majoul, I.
Martin-Garcia, J. M.
Messerschmidt, M.
Shoeman, R. L.
Weierstall, U.
Westenhoff, S.
White, T. A.
Williams, G. J.
Yoon, C. H.
Zatsepin, N.
Fromme, P.
Duszenko, M.
Chapman, H. N.
and
Betzel, C.
2020.
In cellulo crystallization of Trypanosoma brucei IMP dehydrogenase enables the identification of genuine co-factors.
Nature Communications,
Vol. 11,
Issue. 1,
Chan-Bacab, Manuel Jesús
Reyes-Estebanez, María Manuela
Camacho-Chab, Juan Carlos
and
Ortega-Morales, Benjamín Otto
2021.
Microorganisms as a Potential Source of Molecules to Control Trypanosomatid Diseases.
Molecules,
Vol. 26,
Issue. 5,
p.
1388.
OKADA, Tetsuya
and
INUI, Takashi
2021.
Development of therapeutic agents for human African trypanosomiasis.
Translational and Regulatory Sciences,
Vol. 3,
Issue. 2,
p.
43.
Wolff, David W.
Bianchi-Smiraglia, Anna
and
Nikiforov, Mikhail A.
2022.
Compartmentalization and regulation of GTP in control of cellular phenotypes.
Trends in Molecular Medicine,
Vol. 28,
Issue. 9,
p.
758.
Vidal, Antonio E.
Yagüe-Capilla, Miriam
Martínez-Arribas, Blanca
García-Caballero, Daniel
Ruiz-Pérez, Luis M.
and
González-Pacanowska, Dolores
2022.
Inosine triphosphate pyrophosphatase from Trypanosoma brucei cleanses cytosolic pools from deaminated nucleotides.
Scientific Reports,
Vol. 12,
Issue. 1,