Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-04T19:20:19.543Z Has data issue: false hasContentIssue false

Characterization of Megatrypanum trypanosomes from European Cervidae

Published online by Cambridge University Press:  06 April 2009

R. Böse
Affiliation:
Institute of Parasitology, School of Veterinary Medicine, Bünteweg 17, 3000 Hannover 71, Germany
K. Petersen
Affiliation:
Institute of Parasitology, School of Veterinary Medicine, Bünteweg 17, 3000 Hannover 71, Germany
H. Pospichal
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, 4002 Basel, Switzerland
N. Buchanan
Affiliation:
Wellcome Unit of Molecular Parasitology, Department of Veterinary Parasitology, University of Glasgow, Bearsden Road, Glasgow G61 IQH, UK
A. Tait
Affiliation:
Wellcome Unit of Molecular Parasitology, Department of Veterinary Parasitology, University of Glasgow, Bearsden Road, Glasgow G61 IQH, UK

Summary

Megatrypanum trypanosomes have been isolated from a number of different European Cervidae, but on the basis of morphology it has not been possible to define the species to which these isolates belong. We isolated Trypanosoma (Megatrypanum) theileri from 10 cattle, and Megatrypanum trypanosomes from 11 fallow deer (Cervus dama), 9 red deer (Cervus elaphus), and 4 roe deer (Capreolus capreolus) by blood culture on a biphasic medium (NNN agar slopes). Trypanosomes were propagated in Schneider's Drosophila medium and characterized by isoenzyme analysis and molecular karyotyping. Isocitrate dehydrogenase and phosphoglucomutase were visualized after starch gel electrophoresis of trypanosome lysates. By cluster analysis of this data all isolates from deer were clearly separated from the T. (M.) theileri isolates from cattle. Isolates from roe deer were different not only from T. (M.) theileri but also from the other deer isolates. Isolates from fallow deer and red deer were grouped together. Thus, there are probably at least two different species of Megatrypanum trypanosomes in the three Cervidae. One parasitizing roe deer, the other, apparently less host specific species, infecting red deer and fallow deer. Separation of the chromosomes of Megatrypanum trypanosomes by pulsed-field gradient gel electrophoresis (PFGE) showed that each isolate contained a large number (> 18) of chromosomes ranging in size from 300 to > 2200 kb. The molecular karyotypes were similar for all isolates, although no isolate was identical to another.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Betschart, B., Wyler, R. & Jenni, L. (1983). Characterization of Trypanozoon stocks by isoelectric focusing and isoenzyme analysis. Acta Tropica 40, 25–8.Google ScholarPubMed
Böse, R., Friedhoff, K. T. & Olbrich, S. (1987). Transmission of Megatrypanum trypanosomes to Cervus dama by Tabanidae. Journal of Protozoology 34, 110–13.CrossRefGoogle ScholarPubMed
Corcoran, L. M., Thompson, J. K., Walliker, D. & Kemp, D. J. (1988). Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphism in P. falciparum. Cell 53, 807–13.CrossRefGoogle ScholarPubMed
Deane, L. M. (1961). Tripanosomideos de mamíferos da Regiao Amazônica. I. Alguns flagelados encontrados no sangue de mamíferos silvestres do Estado do Pará. Revista do Instituto de Medicina Tropical (São Paulo) 3, 1528.Google Scholar
Dirie, M. F., Bornstein, S., Wallbanks, K. R., Molyneux, D. H. & Steen, M. (1990 a). Comparative studies on Megatrypanum trypanosomes from cervids. Tropical Medicine and Parasitology 41, 198202.Google ScholarPubMed
Dirie, M. F., Bornstein, S., Wallbanks, K. R., Stiles, J. K. & Molyneux, D. H. (1990 b). Zymogram and life-history studies on trypanosomes of the subgenus Megatrypanum. Parasitology Research 76, 669–74.CrossRefGoogle ScholarPubMed
Foote, S. J. & Kemp, D. J. (1989). Chromosomes of malaria parasites. Trends in Genetics 5, 337–42.CrossRefGoogle ScholarPubMed
Friedhoff, K. T., Petrich, J., Hoffmann, M. & Büscher, G. (1984). Trypanosomes in Cervidae in Germany. Zentralblatt für Bakteriologie und Hygiene, A 256, 286–7.Google ScholarPubMed
Giannini, S. H., Curry, S. S., Tesh, R. B. & Van Der Ploeg, L. H. T. (1990). Size-conserved chromosomes and stability of molecular karyotype in cloned stocks of Leishmania major. Molecular and Biochemical Parasitology 39, 922.CrossRefGoogle ScholarPubMed
Gibson, W. C. (1989). Analysis of a genetic cross between Trypanosoma brucei rhodesiense and T. b. brucei. Parasitology 99, 391402.CrossRefGoogle ScholarPubMed
Gibson, W. C., Garside, L. & Bailey, M. (1992). Trisomy and chromosome size changes in hybrid trypanosomes from a genetic cross between Trypanosoma brucei rhodesiense and T. T. b. brucei. Molecular and Biochemical Parasitology 52, 189200.Google Scholar
Gottesdiener, K., García-ãnoveros, J., Lee, M. G. & Van Dee Ploeg, L. H. T. (1990). Chromosome organisation of the protozoan Trypanosoma brucei. Molecular and Cellular Biology 10, 6079–83.Google Scholar
Herbert, I. V. (1961). Bovine trypanosomiasis due to Trypanosoma theileri, Laveran, 1902 and its occurrence in Eire. Irish Veterinary Journal 15, 230–6.Google Scholar
Hoare, C. A. (1972). The Trypanosomes of Mammals. Oxford, Edinburgh: Blackwell Scientific Publications.Google Scholar
Hoffmann, M., Büscher, G. & Friedhoff, K. T. (1984). Stercorarian trypanosomes from deer (Cervidae) in Germany. Journal of Protozoology 31, 581–4.CrossRefGoogle ScholarPubMed
Kingston, N. & Bobek, B. (1985). A Trypanosome in roe deer, Capreolus capreolus, in Southern Poland. Proceedings of the Helminthological Society, Washington 52, 143.Google Scholar
Kingston, N. & Crum, J. (1977). Trypanosoma cervi Kingston and Morton, 1975 in white-tailed deer, Odocoileus virginianus, in the Southeastern United States. Proceedings of the Helminthological Society, Washington 44, 179–84.Google Scholar
Kingston, N., Dröżdż, J. & Rutkowska, M. (1985). Trypanosoma sp. in red deer (Cervus elaphus) and elk (Alces alces) in Poland. Proceedings of the Helminthological Society, Washington 52, 144–5.Google Scholar
Kingston, N., Franzmann, A. & Maki, L. (1985). Redescription of Trypanosoma cervi (Protozoa) in moose, Alces alces, from Alaska and Wyoming. Proceedings of the Helminthological Society, Washington 52, 54–9.Google Scholar
Kingston, N. & Morton, J. K. (1975). Trypanosoma cervi sp. n. from elk (Cervus canadensis) in Wyoming. Journal of Parasitology 61, 1723.CrossRefGoogle Scholar
Kingston, N., Morton, J. K. & Dieterich, R. (1982). Trypanosoma cervi from Alaskan reindeer, Rangifer tarandus. Journal of Protozoology 29, 588–91.CrossRefGoogle ScholarPubMed
Kingston, N. & Nikander, S. (1985). Poron, Rangifer tarandus, Trypanosoma sp. Suomessa (Trypanosoma sp. in reindeer (Rangifer tarandus) in Finland). Suomen Eläinlääkärilehti 91, 1.Google Scholar
Kingston, N., Thorne, E. T., Thomas, G. M., McHolland, L. & Trueblood, M. S. (1981). Further studies on trypanosomes in game animals in Wyoming II. Journal of Wildlife Diseases 17. 539–46.CrossRefGoogle ScholarPubMed
Lanham, S. M. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521–34.CrossRefGoogle ScholarPubMed
Le Blancq, S. M., Cibulskis, R. E. & Peters, W. (1986). Leishmania in the Old World: 5. Numerical analysis of isoenzyme data. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 517–24.CrossRefGoogle ScholarPubMed
Lighthall, G. K. & Giannini, S. H. (1992). The chromosomes of Leishmania. Parasitology Today 8, 192–9.CrossRefGoogle ScholarPubMed
Lun, Z. -R., Brun, R. & Gibson, W. C. (1992). Kinetoplast DNA and molecular karyotypes of T. evansi and T. equiperdum from China. Molecular and Biochemical Parasitology 50, 189–96.CrossRefGoogle Scholar
Mazza, S., Romaña, C. & Fiora, A. (1932). Algunos hemoparásitos de mamíferos del norte. VI. Reunión de la Sociedad Argentina de Patológica Regional del Norte (Buenos Aires), 2, 990–7.Google Scholar
Matthews, M. J., Kingston, N. & Morton, J. K. (1977). Trypanosoma cervi Kingston and Morton, 1975 from mule deer, Odocoileus hemionus, in Wyoming. Journal of Wildlife Diseases 13, 33–9.CrossRefGoogle ScholarPubMed
Pologe, L. P. & Ravetch, J. V. (1988). Large deletions results from breakage and healing of P. falciparum chromosomes. Cell 55, 869–74.CrossRefGoogle ScholarPubMed
Ravetch, J. V. (1989). Chromosomal polymorphism and gene expression in Plasmodium falciparum. Experimental Parasitology 68, 121–5.CrossRefGoogle ScholarPubMed
Shea, C., Glass, D. J., Parangi, S. & Van Der Ploeg, L. H. T. (1986). Variant surface glycoprotein gene expression site switches in Trypanosoma brucei. Journal of Biological Chemistry 261, 6056–63.CrossRefGoogle ScholarPubMed
Schwartz, D. C. & Cantor, C. R. (1984). Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37, 6775.CrossRefGoogle ScholarPubMed
Tait, A., Babiker, E. A. & Le Ray, D. (1984). Enzyme variation in Trypanosoma brucei spp. I. Evidence for the sub-speciation of Trypanosoma brucei gambiense. Parasitology 89, 311–26.CrossRefGoogle ScholarPubMed
Van Der Ploeg, L. H. T., Smith, C. L., Polvere, R. I. & Gottesdiener, K. (1989). Improved separation of chromosome-size from T. brucei stock 427–60. Nucleic Acids Research 17, 3217–27.CrossRefGoogle Scholar
Woo, P. T. K. (1969). The haematocrit centrifuge technique for the detection of trypanosomes in blood. Canadian Journal of Zoology 47, 921–3.CrossRefGoogle ScholarPubMed