Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-04T19:04:36.645Z Has data issue: false hasContentIssue false

Characterization of intestinally active proteinases of cystnematodes

Published online by Cambridge University Press:  06 April 2009

C. J. Lilley*
Affiliation:
Centre for Plant Biochemistry and Biotechnology, University of Leeds, Leeds LS2 9JT, UK
P. E. Urwin
Affiliation:
Centre for Plant Biochemistry and Biotechnology, University of Leeds, Leeds LS2 9JT, UK
M. J. McPherson
Affiliation:
Centre for Plant Biochemistry and Biotechnology, University of Leeds, Leeds LS2 9JT, UK
H. J. Atkinson
Affiliation:
Centre for Plant Biochemistry and Biotechnology, University of Leeds, Leeds LS2 9JT, UK
*
*Corresponding author. Tel: 0113 233 2863. Fax: 0113 233 3144.

Summary

Cryostat sections of juvenile and adult female stages of the soybean cyst-nematode, Heterodera glycines, were incubated with 4 different naphthylamide-linked peptide substrates to localize and characterize proteinase activity within the animal. Detected activity was restricted to the intestine and 2 distinct classes of proteinase were identified on the basis of substrate specificity and sensitivity to plant proteinase inhibitors. A cathepsin L-like cysteine proteinase activity capable of hydrolysing the synthetic substrates Z-Ala-Arg-Arg-MNA and Z-Phe-Arg-MNA but not Z-Arg-Arg-MNA or L-Arg-NA was inhibited by an engineered variant of a cysteine proteinase inhibitor from rice (Oc-IδD86). The cleavage of Z-Phe-Arg-MNA was sensitive to inhibition by a combination of Oc-IδD86 and cowpea trypsin inhibitor (CpTI). Degenerate oligonucleotide primers were used to amplify fragments of cysteine proteinase genes from 2 cyst-nematodes, H. glycines and Globodera pallida. Comparison of the H. glycines fragment with known genes established highest homology to cathepsin L-like genes. In contrast, the amplified G. pallida fragment displayed greatest homology to cathepsin B-like genes from Caenorhabditis elegans.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auriault, C., Ouaissi, M. A., Torpier, G., Eisen, H. & Capron, A. (1981). Proteolytic cleavage of IgG bound to the Fc receptor of Schistosoma mansoni schistosomula. Parasite Immunology 3, 3344.CrossRefGoogle Scholar
Atkinson, H. J. (1993). Opportunities for improved control of plant parasitic nematodes via plant biotechnology. In Opportunities for Molecular Biology in Crop Production, (ed. Beadle, D. J., Bishop, D. H. L., Copping, L. G., Dixon, G. K. & Holloman, D. W.) pp. 257266. British Crop Protection Council.Google Scholar
Atkinson, H. J., Urwin, P. E., Clarke, M. C. & McPherson, M. J. (1996). Image analysis of the growth of Globodera pallida and Meloidogyne incognita on transgenic tomato roots expressing cystatins. Journal of Nematology (in the Press).Google ScholarPubMed
Barrett, A. J. & Kirschke, H. (1981). Cathepsin B, cathepsin H and cathepsin L. In Methods in Enzymology, Vol. 80 (ed. Lorand, L.) pp. 535561. Academic Press, Orlando.Google Scholar
Bird, A. F. & Bird, J. (1991). The Structure of Nematodes, 2nd edn.California: Academic Press, Inc., San Diego.Google Scholar
Chapman, c. B. & Mitchell, G. F. (1982). Proteolytic cleavage of immunoglobulin by enzymes released by Fasciola hepatica. Veterinary Parasitology 11, 165178.CrossRefGoogle ScholarPubMed
Cox, G. N., Pratt, D., Hageman, R. & Boisvenue, R. J. (1990). Molecular cloning and primary sequence of a cysteine protease expressed by Haemonchus contortus adult worms. Molecular and Biochemical Parasitology 41, 2534.CrossRefGoogle ScholarPubMed
Dasgupta, D. R. & Ganguly, A. K. (1975). Isolation, purification and characterisation of a trypsin-like protease from the root-knot nematode, Meloidogyne incognita. Nematologica 21, 370384.CrossRefGoogle Scholar
Dufour, E., Obled, A., Valin, C. & Béchet, D. (1987). Purification and amino acid sequence of chicken liver cathepsin L. Biochemistry 26, 56895695.CrossRefGoogle ScholarPubMed
Eakin, A. E., Bouvier, J., Sakanari, J. A., Craik, C. S. & McKerrow, J. H. (1990). Amplification and sequencing of genomic DNA fragments encoding cysteine proteases from protozoan parasites. Molecular and Biochemical Parasitology 39, 18.CrossRefGoogle ScholarPubMed
Eisenback, J. D. (1985). Meloidogyne morphology and anatomy. In An Advanced Treatise on Meloidogyne, Vol. 1 (ed. Sasser, J. N. & Carter, C. C.) pp. 4777. North Carolina State University.Google Scholar
Gal, S. & Gottesman, M. M. (1988). Isolation and sequence of a cDNA for human pro-(cathepsin L). The Biochemical Journal 253, 303306.CrossRefGoogle ScholarPubMed
Gatehouse, A. M. R., Shi, Y., Powell, K. S., Brough, C., Hilder, V. A., Hamilton, W. D. O., Newell, C. A., Merryweather, A., Boulter, D. & Gatehouse, J. A. (1993). Approaches to insect resistance using transgenic plants. Philosophical Transactions of the Royal Society of London, B 342, 279286.Google Scholar
Heussler, V. T. & Dobbelaere, D. A. E. (1994). Cloning of a protease gene family of Fasciola hepatica by the polymerase chain reaction. Molecular and Biochemical Parasitology 64, 1123.CrossRefGoogle ScholarPubMed
Hilder, V. A., Gatehouse, A. M. R., Sheerman, S. E., Barker, R. F. & Boulter, D. (1987). A novel mechanism of insect resistance engineered into tobacco. Nature, London 220, 160163.CrossRefGoogle Scholar
Holm, H., Jorgensen, A. & Hanssen, L. E. (1991). Raw soy and purified proteinase inhibitors induce the appearance of inhibitor-resistant trypsin and chymotrypsin activities in Wistar rat duodenal juice. Journal of Nutrition 121, 532538.CrossRefGoogle ScholarPubMed
Hotez, P. J., Haggerty, J., Hawdon, J., Milstone, M., Gamble, H. R., Schad, G. & Richards, F. (1990). Metalloproteases of infective Ancylostoma hookworm larvae and their possible functions in tissue invasion and ecdysis. Infection and Immunity 58, 38833892.CrossRefGoogle ScholarPubMed
Jongsma, M. A., Barker, P. L., Peters, J., Bosch, D. & Stiekema, W. J. (1995). Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of proteinase activity insensitive of inhibition. Proceedings of the National Academy of Sciences, USA 92, 80418045.CrossRefGoogle Scholar
Klinkert, M-Q., Felleisen, R., Link, G., Ruppel, A. & Beck, E. (1989). Primary structures of Sm31/32 diagnostic proteins of Schistosoma mansoni and their identification as proteases. Molecular and Biochemical Parasitology 33, 113122.CrossRefGoogle ScholarPubMed
Knox, D. P. & Kennedy, M. W. (1988). Proteinases released by the parasitic larval stages of Ascaris suum and their inhibition by antibody. Molecular and Biochemical Parasitology 28, 207216.CrossRefGoogle ScholarPubMed
Knox, D. P., Redmond, D. L. & Jones, D. G. (1993). Characterization of proteinases in extracts of adult Haemonchus contortus, the ovine abomasal nematode. Parasitology 106, 395404.CrossRefGoogle ScholarPubMed
Koritsas, V. M. & Atkinson, H. J. (1994). Proteinases of females of the phytoparasite Globodera pallida (potato cyst nematode). Parasitology 109, 357365.CrossRefGoogle Scholar
Lackey, A., James, E. R., Sakanari, J. A., Resnick, S. D., Brown, M., Bianco, A. E. & McKerrow, J. H. (1989). Extracellular proteases of Onchocerca. Experimental Parasitology 68, 176185.CrossRefGoogle ScholarPubMed
Leid, R. W., Suquet, C. M. & Tanigoshi, L. (1987). Parasite defence mechanisms for the evasion of host mmune responses. Veterinary Parasitology 25, 147162.CrossRefGoogle Scholar
Lojda, J., Gossrau, R. & Stoward, P. J. (1991). Proteases. In Histochemistry Theoretical and Applied, Vol. 3 (ed. Steward, P. J. & Pearse, A. G.) pp. 281335. Churchill Livingstone, London.Google Scholar
Maki, J. & Yanagisawa, T. (1986). Demonstration of carboxyl and thiol protease activities in adult Schistosoma mansoni, Dirofilaria immitis, Angiostrongylus cantonensis and Ascaris suum. Journal of Helminthology 60, 3137.CrossRefGoogle ScholarPubMed
Matsumoto, I., Watanabe, H., Abe, K., Arai, S. & Emori, Y. (1995). A putative digestive cysteine proteinase from Drosophila melanogaster is predominantly expressed in the embryonic and larval rnidgut. European Journal of Biochemistry 227, 582587.CrossRefGoogle Scholar
McKerrow, J. H. (1989). Parasite proteases. Experimental Parasitology 68, 111115.CrossRefGoogle ScholarPubMed
McKerrow, J. H. & Doenhoeff, M. (1988). Schistosome proteases. Parasitology Today 4, 334340.CrossRefGoogle ScholarPubMed
Morris, S. R. & Sakanari, J. A. (1994). Characterisation o the serine protease and serine protease inhibitor from the tissue-penetrating nematode Anisakis simplex. Journal of Biological Chemistry 269, 2765027656.CrossRefGoogle Scholar
Newport, G. R., McKerrow, J. H., Hedstrom, R., Petitt, M., McGarrigle, L., Barr, P. J. & Agabian, N. (1988). Cloning of the proteinase that facilitates infection by Schistosome parasites. Journal of Biological Chemistry 263, 1317913184.CrossRefGoogle ScholarPubMed
Pratt, D., Armes, L. G., Hageman, R., Reynolds, V., Boisvenue, R. J. & cox, G. N. (1992). Cloning and sequence comparisons of four distinct cysteine proteases expressed in Haemonchus contortus adult worms. Molecular and Biochemical Parasitology 51, 209218.CrossRefGoogle ScholarPubMed
Pratt, D., Boisvenue, R. J. & cox, G. N. (1992). Isolation of putative cysteine protease genes of Ostertagia ostertagi. Molecular and Biochemical Parasitology 56, 3948.CrossRefGoogle ScholarPubMed
Pratt, D., Cox, G. N., Milhausen, M. J. & Boisvenue, R. J. (1990). A developmentally regulated cysteine protease gene family in Haemonchus contortus. Molecular and Biochemical Parasitology 43, 181192.CrossRefGoogle ScholarPubMed
Ray, C. & McKerrow, J. H. (1992). Gut-specific and developmental expression of a Caenorhabditis elegans cysteine protease gene. Molecular and Biochemical Parasitology 51, 239250.CrossRefGoogle ScholarPubMed
Rhoads, M. L. & Fetterer, R. H. (1995). Developmentally regulated secretion of cathepsin L-like cysteine proteases by Haemonchus contortus. Journal of Parasitology 81, 505512.CrossRefGoogle ScholarPubMed
Robertson, B. D., Bianco, A. E., McKerrow, J. H. & Maizels, R. M. (1989). Toxocara canis: Proteolytic enzymes secreted by the infective larvae in vitro. Experimental Parasitology 69, 3036.CrossRefGoogle ScholarPubMed
Sakanari, J. A., Staunton, C. E., Eakin, A. E., Craik, C. S. & McKerrow, J. H. (1989). Serine proteases from nematode and protozoan parasites: Isolation of sequence homologs using generic molecular probes. Proceedings of the National Academy of Sciences, USA 86, 48634867.CrossRefGoogle ScholarPubMed
Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.Google Scholar
Urwin, P. E., Atkinson, H. J. & McPherson, M. J. (1996). Involvement of the NH2-terminal region of oryzacystatin-I in cysteine proteinase inhibition. Protein Engineering 8, 13031308.CrossRefGoogle Scholar
Urwin, P. E., Atkinson, H. J., Waller, D. A. & McPherson, M. J. (1995). Engineered oryzacystatin-I expressed in transgenic hairy roots confers resistance to Globodera pallida. The Plant Journal 8, 121131.CrossRefGoogle ScholarPubMed
Zucker-Aprison, E. & Blumenthal, T. (1989). Potential regulatory elements of nematode vitellogenin genes revealed by interspecies sequence comparison. Journal of Molecular Evolution 28, 487496.CrossRefGoogle ScholarPubMed