Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T19:58:39.991Z Has data issue: false hasContentIssue false

Characterization of highly concentrated serum lectins in spotted halibut Verasper variegatus

Published online by Cambridge University Press:  13 December 2007

A. HATANAKA*
Affiliation:
Central Research Laboratories of Nippon Suisan Kaisha Ltd, 559-6 Kitano-Machi, Hachioji, Tokyo 192-0906, Japan
N. UMEDA
Affiliation:
Marine Biological Technology Center of Nippon Suisan Kaisha Ltd, 508-8 Ariakeura Tsurumi, Saiki-Shi, Oita 876-1204, Japan
N. HIRAZAWA
Affiliation:
Central Research Laboratories of Nippon Suisan Kaisha Ltd, 559-6 Kitano-Machi, Hachioji, Tokyo 192-0906, Japan
*
*Corresponding author: Central Research Laboratories of Nippon Suisan Kaisha Ltd, 559-6 Kitano-Machi, Hachioji, Tokyo 192-0906, Japan. Tel: +81 426 56 5195. Fax: +81 426 56 5188. E-mail: [email protected]

Summary

Mannose-binding lectins were purified from flatfish spotted halibut (Verasper variegatus) serum. These lectins, which we named VVL (Verasper variegatus lectin)-α (~33 kDa) and VVL-β (~30 kDa) (VVLs), under non-reducing SDS-PAGE, were surprisingly highly concentrated in serum (1·92±0·55 mg/ml; n=5), compared with other serum lectins. Both VVLs are heterodimers comprised of 2 types of subunit via inter-subunit disulfide bonds, and one subunit of VVL-α has a N-linked sugar chain. Based on N-terminal amino acid sequences, the nucleotide sequences of one subunit of VVL cDNAs were determined by 3′- and 5′-rapid amplification of the cDNA ends. The full-length VVL subunit cDNAs contained 489 bp, encoding an open reading frame of 163 amino acids. We found that VVLs bind to an ~8 kDa ciliary surface glycoprotein (a putative agglutination/immobilization antigen that we reported previously) of the fish parasite Neobenedenia girellae, and agglutinate this parasite in vitro.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bates, E. E., Fournier, N., Garcia, E., Valladeau, J., Durand, I., Pin, J. J., Zurawski, S. M., Patal, S., Abrams, J. S., Lebecque, S., Garrone, P. and Saeland, S. (1999). APCs express DCIR, a novel C-type lectin surface receptor containing an immunoreceptor tyrosine-based inhibitory motif. Journal of Immunology 163, 19731983.CrossRefGoogle ScholarPubMed
Bondad-Reantaso, M. G., Ogawa, K., Fukudome, M. and Wakabayashi, H. (1995). Reproduction and growth of Neobenedenia girellae (Monogenea: Capsalidae), a skin parasite of cultured marine fishes of Japan. Fish Pathology 30, 227231.Google Scholar
Border, C. (1981). Phase separation of integral membrane proteins in Triton X-114. The Journal of Biological Chemistry 256, 16041607.CrossRefGoogle Scholar
Bradford, M. A. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248.CrossRefGoogle ScholarPubMed
Cammarata, M., Vazzana, M., Chinnici, C. and Parrinello, N. (2001). A serum fucolectin isolated and characterized from sea bass Dicetrarchus labrax. Biochimica et Biophysica Acta 1528, 196202.Google Scholar
Clark, T. G., Dickerson, H. W. and Findly, R. C. (1988). Immune response of channel catfish to ciliary antigens of Ichthyophthirius multifiliis. Developmental and Comparative Immunology 12, 581594.Google Scholar
Clark, T. G., Lin, G. T. and Dickerson, H. W. (1995). The I-antigens of Ichthyophthirius multifiliis are GPI-anchored proteins. Annual Review of Fish Diseases 5, 113131.Google Scholar
Clark, T. G., Lin, G. T. and Dickerson, H. W. (1996). Surface antigen cross-linking triggers forced exit of protozoan parasite from its host. Proceedings of the National Academy of Sciences, USA 93, 68256829.CrossRefGoogle ScholarPubMed
Drickamer, K. (1992). Engineering galactose-binding activity into a C-type mannose-binding protein. Nature, London 360, 183186.CrossRefGoogle ScholarPubMed
Dickerson, H. W., Clark, T. G. and Findly, R. C. (1989). Ichthyophthirius multufiliis has membrane-associated immobilization antigens. The Journal of Protozoology 36, 159164.Google Scholar
Ewart, K. W., Johnson, S. C. and Ross, N. W. (1999). Identification of pathogen binding lectin in salmon serum. Comparative Biochemistry and Physiology. Part C 123, 915.Google Scholar
Fock, W. L., Chen, C. L., Lam, T. J. and Sin, Y. M. (2000). Isolation and characterisation of a serum lectin from blue gourami, Trichogaster trichopterus (Pallus). Fish and Shellfish Immunology 10, 489504.Google Scholar
Fujita, T., Endo, Y. and Nonaka, M. (2004). Primitive complement system-recognition and activation. Molecular Immunology 41, 103111.Google Scholar
Hargis, W. H. Jr. (1955). A few species of Benedenia (Trematoda: Monogenia) from Girella nigricans, opaleye. The Journal of Parasitology 41, 4850.CrossRefGoogle Scholar
Hatanaka, A., Umeda, N., Yamashita, S. and Hirazawa, N. (2005). A small ciliary surface glycoprotein of the monogenean parasite Neobenedenia girellae acts as an agglutination/immobilization antigen and induces an immune response in the Japanese flounder Paralichthys olivaceus. Parasitology 131, 591600.Google Scholar
Hatanaka, A., Umeda, N., Yamashita, S. and Hirazawa, N. (2007). Identification and characterization of a putative agglutination/immobilization antigen on the surface of Cryptocaryon irritans. Parasitology 134, 11631174.Google Scholar
Hirazawa, N., Mitsuboshi, T., Hirata, T. and Shirasu, K. (2004). Susceptibility of spotted halibut Verasper variegatus (Pleuronectidae) to infection by monogenean Neobenedenia girellae (Capsalidae) and oral therapy trials using praziquantel. Aquaculture 238, 8395.Google Scholar
Kilpatrick, D. C. (2000). Handbook of Animal Lectins, Wiley & Sons Ltd, Chichester, UK.Google Scholar
Kimoto, K. and Sato, K. (2002). Cultivation experiments of spotted halibut. Oita Prefectural Fish Research Center Report, 139151. (in Japanese.)Google Scholar
Kobayashi, K. (1980). Rearing method of juvenile Japanese flounder Paralichthys olivaceus. Tottori Prefectural Fish Research Center Report 22, 7988. (in Japanese.)Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680.Google Scholar
Leong, T. S. (1997) Control of parasites in cultured marine finfishes in Southeast Asia – an overview. International Journal for Parasitology 27, 11771184.Google Scholar
Mistry, A. C., Honda, S. and Hirose, S. (2001). Structure properties and enhanced expression of galactose-binding C-type lectins in mucous cells of gills from fresh water Japanese eels (Anguilla japonica). The Biochemical Journal 360, 107115.CrossRefGoogle Scholar
Nakano, M. and Yano, T. (1998). Structural and functional identification of complement components of the bony fish, carp (Cyprinus carpio). Immunological Reviews 166, 2738.Google Scholar
Ogawa, K., Bondad-Reantaso, M. G., Fukudome, M. and Wakabayashi, H. (1995). Neobenedenia girellae (Hargis, 1955) Yamaguchi, 1963 (Monogenia: Capsalidae) from cultured marine fishes of Japan. The Journal of Parasitology 81, 223227.Google Scholar
Turner, M. W. (1996). Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunology Today 17, 532540.Google Scholar
Tasumi, S., Ohira, T., Kawazoe, I., Suetake, H., Suzuki, Y. and Aida, K. (2002). Primary structure and characteristics of a lectin from skin mucus of the Japanese eel Anguilla japonica. The Journal of Biological Chemistry 277, 2730527311.CrossRefGoogle ScholarPubMed
Tsutsumi, S., Tasumi, S., Suetake, H. and Suzuki, Y. (2003). Lectins homologous to those of Monocotyledonous plants in the skin mucus and intestine of pufferfish, Fugu rubripes. The Journal of Biological Chemistry 278, 2088222089.CrossRefGoogle Scholar
Umeda, N. and Hirazawa, N. (2004). Response of Monogenean Neobenedenia girellae to low salinities. Fish Pathology 39, 105107.Google Scholar
Umeda, N., Hatanaka, A. and Hirazawa, N. (2007). Immobilization antibodies of tiger puffer Takifugu rubripes induced by i.p. injection against monogenean Heterobothrium okamotoi oncomiracidia do not prevent the infection. Parasitology 134, 853863.Google Scholar
Vitved, L., Holmskov, U., Koch, C., Teisner, B., Hansen, S. and Skjødt, K. (2000). The homologue of mannose-binding lectin in the carp family Cyprinidae is expressed at high level in spleen, and the deduced primary structure predicts affinity for galactose. Immunogenetics 51, 955964.CrossRefGoogle ScholarPubMed
Yamaguchi, S. (1963). Systema Helminthum, Vol. IV. Monogenia and Apidocotylea. John Wiley and Sons, Interscience Publishers, New York.Google Scholar
Zacharius, R. M., Zell, T. E., Morrison, J. H. and Woodlock, J. J. (1969). Glycoprotein staining following electrophoresis on acrylamide gels. Analytical Biochemistry 30, 148152.CrossRefGoogle ScholarPubMed