Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T07:58:50.708Z Has data issue: false hasContentIssue false

Characterization of a mitochondrion-like organelle in Cryptosporidium parvum

Published online by Cambridge University Press:  10 June 2004

L. PUTIGNANI
Affiliation:
Division of Infection and Immunity, Institute of Biomedical and Life Science, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK Present address: National Institute for Infectious Diseases (INMI), IRCCS Lazzaro Spallanzani, Molecular Microbiology Unit, Via Portuense 292, 00149 Rome, Italy.
A. TAIT
Affiliation:
Wellcome Centre for Molecular Parasitology, Anderson College, University of Glasgow, Glasgow G11 6NU, UK
H. V. SMITH
Affiliation:
Unit of Parasitology, Stobhill Hospital of Glasgow, Glasgow, Scotland, UK
D. HORNER
Affiliation:
Dipartimento di Scienze Molecolari e Biotecnolgie, University of Milan, via Celoria 26, Milan 20133, Italy
J. TOVAR
Affiliation:
School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
L. TETLEY
Affiliation:
Division of Infection and Immunity, Institute of Biomedical and Life Science, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
J. M. WASTLING
Affiliation:
Division of Infection and Immunity, Institute of Biomedical and Life Science, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

Cryptosporidium parvum is a protozoan parasite that causes widespread diarrhoeal disease in humans and other animals and is responsible for large waterborne outbreaks of cryptosporidiosis. Unlike many organisms belonging to the phylum Apicomplexa, such as Plasmodium spp. and Toxoplasma gondii, there is no clinically proven drug treatment against this parasite. Aspects of the basic biology of C. parvum remain poorly understood, including a detailed knowledge of key metabolic pathways, its genome organization and organellar complement. Previous studies have proposed that C. parvum lacks a relic plastid organelle, or ‘apicoplast’, but that it may possess a mitochondrion. Here we characterize a mitochondrion-like organelle in C. parvum by (i) ultrastructural and morphological description (ii) localization of heterologous mitochondrial chaperonin antibody probes (iii) phylogenetic analysis of genes encoding mitochondrial transport proteins (iv) identification and analysis of mitochondrion-associated gene sequences. Our descriptive morphological analysis was performed by energy-filtering transmission electron microscopy (EFTEM) of C. hominis and C. parvum. The ‘mitochondrion-like’ organelle was characterized by labelling the structure with a heterologous mitochondrial chaperonin probe (hsp60) both in immunoelectron microscopy (IMEM) and immunofluorescence (IMF). Phylogenetic analysis of the mitochondrial import system and housekeeping components (hsp60 and hsp70-dnaK) suggested that the C. parvum mitochondrion-like organelle is likely to have descended from a common ancestral apicomplexan mitochondrion. We also identified a partial cDNA sequence coding for an alternative oxidase (AOX) gene, a component of the electron transport chain which can act as an alternative to the terminal mitochondrial respiratory complexes III and IV, which has not yet been reported in any other member of this phylum. Degenerate primers developed to identify selected mitochondrial genes failed to identify either cytochrome oxidase subunit I, or cytochrome b. Taken together, our data aim to provide new insights into the characterization of this Cryptosporidium organelle and a logical framework for future functional investigation.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ANDERSSON, M. E. & NORDLUND, P. ( 1999). A revised model of the active site of alternative oxidase. FEBS Letters 449, 1722.CrossRefGoogle Scholar
ANDERSSON, S. G., ZOMORODIPOUR, A., ANDERSSON, J. O., SICHERITZ-PONTEN, T., ALSMARK, U. C., PODOWSKI, R. M., NÄSLUND, A. K., ERIKSSON, A. S., WINKLER, H. H. & KURLAND, C. G. ( 1998). The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature, London 396, 133140.CrossRefGoogle Scholar
BEYER, T. V., SVEZHOVA, N. V., SIDORENKO, N. V. & KHOKHLOV, S. E. ( 2000). Cryptosporidium parvum (Coccidia, Apicomplexa): some new ultrastructural observations on its endogenous development. European Journal of Protistoology 36, 151159.CrossRefGoogle Scholar
BLUNT, D. S., KHRAMTSOV, N. V., UPTON, S. J. & MONTELONE, B. A. ( 1997). Molecular karyotype analysis of Cryptosporidium parvum: lessons evidence for eight chromosomes and a low-molecular-size molecule. Clinical Diagnostic Laboratory Immunology 4, 1113.Google Scholar
BROWN, S. M., McDONALD, V., DENTON, H. & COOMBS, G. H. ( 1996). The use of a new viability assay to determine the susceptibility of Cryptosporidium and Eimeria sporozoites to respiratory inhibitors and extremes of pH. FEMS Microbiology Letters 142, 203208.CrossRefGoogle Scholar
BUETOW, D. E. ( 1989). The mitochondrion. In The biology of Euglena, Vol. 4. Subcellular Biochemistry and Molecular Biology (ed. Buetow, D. E.), pp. 247314. Academic Press, New York.CrossRef
BUKHARI, Z. & SMITH, H. V. ( 1995). Effect of three concentration techniques on viability of Cryptosporidium parvum oocysts recovered from bovine feces. Journal of Clinical Microbiology 33, 25922595.Google Scholar
CAVALIER-SMITH, T. ( 2002). The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. International Journal of Systematic Evolutionary Microbiology 52, 297354.CrossRefGoogle Scholar
CHAR, S., KELLY, P., NAEEM, A. & FARTHING, J. G. ( 1996). Codon usage in Cryptosporidium parvum differs from that from other Eimeriorina. Parasitology 112, 357362.CrossRefGoogle Scholar
CHAUDHURI, M., AJAYI, W. & HILL, G. C. ( 1998). Biochemical and molecular properties of the Trypanosoma brucei alternative oxidase. Molecular and Biochemical Parasitology 95, 5368.CrossRefGoogle Scholar
COOMBS, G. H. ( 1999). Biochemical peculiarities and drug targets in Cryptosporidium parvum: lessons from other coccidian parasites. Parasitology Today 15, 333338.CrossRefGoogle Scholar
COOMBS, G. H., DENTON, H., BROWN, S. M. & THONG, K. W. ( 1997). Biochemistry of coccidia. Advances in Parasitology 39, 141226.CrossRefGoogle Scholar
DOUGLAS, S., ZAUNER, S., FRAUNHOLZ, M., BEATON, M., PENNY, S., DENG, L. T., WU, X., REITH, M., CAVALIER-SMITH, T. & MAIER, U. G. ( 2001). The highly reduced genome of an enslaved algal nucleus. Nature, London 410, 10911096.CrossRefGoogle Scholar
ENTRALA, E. & MASCARO, C. ( 1997). Glycolytic enzyme activities in Cryptosporidium parvum oocysts. FEMS Microbiology Letters 151, 5157.CrossRefGoogle Scholar
FEAGIN, J. E. ( 1994). The extranuclear DNAs of Apicomplexan parasites. Annual Reviews of Microbiology 48, 81104.CrossRefGoogle Scholar
GARDNER, M. J., HALL, N., FUNG, E., WHITE, O., BERRIMAN, M., HYMAN, R. W., CARLTON, J. M., PAIN, A., NELSON, K. E., BPWMAN, S., PAULSEN, I. T., JAMES, K., ELSEN, J. A., RUTHERFORD, K., SALZBERG, S. L., CRAIG, A., KYES, S., CHAN, M., NENE, V., SHALLOM, S. J., SUH, B., PETERSON, J., ANGIUOLI, S., PERTEA, M., ALLEN, J., SELENGUT, J., HAFT, D., MATHER, M. W., VAIDYA, A. B., MARTIN, D. M. A., FAIRLAMB, A. H., FRAUNHOLZ, M. J., ROOS, D., RALPH, S. A., McFADDEN, G. I., CUMMINGS, L. M., SUBRAMANIAN, G. M., MUNGALL, C., VENTER, J. C., CARUCCI, D. J., HOFFMAN, S. L., NEWBOLD, C., DAVIS, R. W., FRASER, C. M. & BARRELL, B. ( 2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, London 419, 498511.CrossRefGoogle Scholar
HOLMGREN, A. ( 1989). Thioredoxin and glutaredoxin systems. Journal of Biological Chemistry 264, 1396313966.Google Scholar
INAGAKI, Y., HAYASHI-ISHIMARU, Y., EHARA, M., IGARASHI, I. & OHAMA, T. ( 1997). Algae or protozoa: phylogenetic position of euglenophytes and dinoflagellates as inferred from mitochondrial sequences. Journal of Molecular Evolution 45, 295300.CrossRefGoogle Scholar
KABIRI, M. & STEVERDING, D. ( 2001). Identification of a developmentally regulated iron superoxide dismutase of Trypanosome brucei. Biochemistry Journal 360, 173177.CrossRefGoogle Scholar
KAYSER, O., WATERS, W. R., WOODS, K. M., UPTON, S. J., KEITHLY, J. S. & KIDERLEN, F. ( 2001). Evaluation of in vitro activity of aurones and related compounds against Cryptosporidium parvum. Planta Medica 67, 722725.CrossRefGoogle Scholar
KAYSER, O., WATERS, W. R., WOODS, K. M., UPTON, S. J., KEITHLY, J. S., LAATSCH, H. & KIDERLEN, F. ( 2002). Evaluation of in vitro and in vivo activity of benzindazole-4, 9-quinones against Cryptosporidium parvum. Journal of Antimicrobial Chemotherapy 50, 978980.CrossRefGoogle Scholar
KITA, K., MIYADERA, H., SARUTA, F. & MIYOSHI, H. ( 2001). Parasite mitochondria as a target for chemotherapy. Journal of Health Science 47, 219239.CrossRefGoogle Scholar
LANG-UNNASCH, N. & MURPHY, A. D. ( 1998). Metabolic changes of the malaria parasite during the transition from the human to the mosquito host. Annual Reviews of Microbiology 52, 561590.CrossRefGoogle Scholar
LANGRETH, S. G., JENSEN, J. B., REESE, R. T. & TRAGER, W. ( 1978). Fine structure of human malaria in vitro. Journal of Protozoology 25, 443452.CrossRefGoogle Scholar
LIU, C., VIGDOROVICH, V., KAPUR, V. & ABRAHAMSEN, M. S. ( 1999). A random survey of the Cryptosporidium parvum genome. Infection and Immunity 67, 39603969.Google Scholar
MAXWELL, D. P., WANG, Y. & McINTOSH, L. ( 1999). The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proceedings of the National Academy of Sciences, USA 96, 82718276.CrossRefGoogle Scholar
MELO, E. J., ATTIAS, M. & DE SOUZA, W. ( 2000). The single mitochondrion of tachyzoites of Toxoplasma gondii. Journal of Structural Biology 130, 2733.CrossRefGoogle Scholar
MORGAN-RYAN, U. M., FALL, A., WARD, L. A., HIJJAWI, N., SULAIAM, I., FAYER, R., THOMPSON, R. C., OLSON, M., LAL, A. & XIAO, L. ( 2002). Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens. Journal of Eukaryotic Microbiology 49, 433440.Google Scholar
MURPHY, A. D., DOELLER, J. E., EARN, B. & LANG-UNNASCH, N. ( 1997). Plasmodium falciparum: cyanide-resistant oxygen consumption. Experimental Parasitology 87, 112120.CrossRefGoogle Scholar
MURPHY, A. & LANG-UNNASCH, N. ( 1999). Alternative oxidase inhibitors potentiate the activity of atovaquone against Plasmodium falciparum. Antimicrobial Agents and Chemotherapy 43, 651654.Google Scholar
NAKAZAWA, M., INUI, H., YAMAJI, R., YAMAMOTO, T., TAKENAKA, S., UEDA, M., NAKANO, Y. & MIYATAKE, K. ( 2000). The origin of pyruvate: NADP+ oxidoreductase in mitochondria of Euglena gracilis. FEBS Letters 479, 155157.CrossRefGoogle Scholar
NICHOLS, R. A., CAMPBELL, B. M. & SMITH, H. V. ( 2003). Identification of Cryptosporidium spp. oocysts in United Kingdom noncarbonated natural mineral waters and drinking waters by using a modified nested PCR-restriction frgment length polymorphism assay. Applied Environmental Microbiology 69, 41834189.Google Scholar
NIHEI, C., FUKAI, Y. & KITA, K. ( 2002). Trypanosome alternative oxidase as a target of chemotherapy. Biochimica et Biophysica Acta 1587, 234239.CrossRefGoogle Scholar
RANUCCI, L., MULLER, H. M., LA ROSA, G., RECKMANN, I., MORALES, M. A., SPANO, F., POZIO, E. & CRISANTI, A. ( 1993). Characterization and immunolocalization of a Cryptosporidium protein containing repeated amino acid motifs. Infection and Immunity 61, 23472356.Google Scholar
RIORDAN, C. E., LANGRETH, S. G., SANCHEZ, L. B., KAYSER, O. & KEITHLEY, J. S. ( 1999). Preliminary evidence for a mitochondrion in Cryptosporidium parvum: phylogenetic and therapeutic implications. Journal of Eukaryotic Microbiology 46, 52S55S.Google Scholar
ROTTE, C., STEJSKAL, F., ZHU, G., KEITHLY, J. S. & MARTIN, W. ( 2001). Pyruvate: NADP+Oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protist. Molecular Biology Evolution 18, 710720.CrossRefGoogle Scholar
SANCHEZ, G. I., CARUCCI, D. J., SACCI, J. Jr., RESAU, J. H., ROGERS, W. O., KUMAR, N. & HOFFMAN, S. L. ( 1999). Plasmodium yoelii: cloning and characterization of the gene encoding for the mitochondrial heat shock protein 60. Experimental Parasitology 93, 181190.CrossRefGoogle Scholar
SLUSE, F. E. & JARMUSZKIEWICZ, W. ( 1998). Alternative oxidase in the branched mitochondrial respiratory network: an overview on structure, function, regulation and role. Brazilian Journal of Medical and Biological Research 31, 733747.CrossRefGoogle Scholar
SPANO, F., PUTIGNANI, L., NAITZA, S., PURI, C., WRIGHT, S. & CRISANTI, A. ( 1998). Molecular cloning and expression analysis of a Cryptosporidium parvum gene encoding a new member of the thrombospondin family. Molecular and Biochemical Parasitology 92, 147162.CrossRefGoogle Scholar
STRONG, W. B. & NELSON, R. G. ( 2000). Preliminary profile of Cryptosporidium parvum genome: an expressed sequence tag and genome survey sequence analysis. Molecular and Biochemical Parasitology 107, 132.CrossRefGoogle Scholar
TETLEY, L., BROWN, S. M., McDONALD, V. & COOMBS, G. H. ( 1998). Ultrastructural analysis of the sporozoite of Cryptosporidium parvum. Microbiology 144, 32493255.CrossRefGoogle Scholar
TOURSEL, C., DZIERSZINSKI, F., BERNIGAUD, A., MORTUAIRE, M. & TOMAVO, S. ( 2000). Molecular cloning, organellar targeting and developmental expression of mitochondrial chaperone HSP60 in Toxoplasma gondii. Molecular and Biochemical Parasitology 111, 319332.CrossRefGoogle Scholar
TOVAR, J., FISCHER, A. & CLARK, G. ( 1999). The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Molecular Microbiology 32, 10131021.CrossRefGoogle Scholar
UNI, S., ISEKI, M., MAEKAWA, T., MORIYA, K. & TAKADA, S. ( 1987). Ultrastructure of Cryptosporidium muris (strain RN 66) parasitizing the murine stomach. Parasitology Research 74, 123132.CrossRefGoogle Scholar
VANLERBERGHE, G. C. & McINTOSH, L. ( 1997). Alternative oxidase: from gene to function. Annual Reviews of Plant Physiology and Plant Molecular Biology 48, 703734.CrossRefGoogle Scholar
VERMEULEN, A. N., KOK, J. J., VAN DEN BOOGAART, P., DIJKEMA, R. & CLAESSENS, J. A. ( 1993). Eimeria refractile body proteins contain two potentially functional characteristics: transhydrogenase and carbohydrate transport. FEMS Microbiology Letters 110, 223229.CrossRefGoogle Scholar
WESTON, C. J., WHITE, S. A. & JACKSON, J. B. ( 2001). The unusual transhydrogenase of Entamoeba histolytica. FEBS Letters 488, 5154.CrossRefGoogle Scholar
WIDMER, G., AKIYOSHI, D., BUCKHOLT, M. A., FENG, X., RICH, S. M., DEARY, K. M., BOWMAN, C. A., XU, P., WANG, Y., WANG, X., BUCK, G. A. & TZIPORI, S. ( 2000). Animal propagation and genomic survey of a genotype I isolate of Cryptosporidium parvum. Molecular and Biochemical Parasitology 108, 187197.CrossRefGoogle Scholar
WILSON, R. J. & WILLIAMSON, D. H. ( 1997). Extrachromosomal DNA in the Apicomplexa. Microbiology and Molecular Biology Reviews 61, 116.Google Scholar
ZHU, G., MARCHEWKA, M. J. & KEITHLY, J. S. ( 2000). Cryptosporidium appears to lack a plastid genome. Microbiology 146, 315321.CrossRefGoogle Scholar
ZHU, G. & KEITHLY, J. S. ( 2002). Alpha-proteobacterial relationship of apicomplexan lactate and malate dehydrogenases. Journal of Eukaryotic Microbiology 49, 255261.CrossRefGoogle Scholar