Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T13:25:43.708Z Has data issue: false hasContentIssue false

The challenges of asymmetric mating – the influence of male and female size on the reproductive output of Acanthochondria cornuta (Chondracanthidae)

Published online by Cambridge University Press:  19 September 2016

D. G. FRADE*
Affiliation:
Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
S. NOGUEIRA
Affiliation:
Departamento de Biologia, Universidade do Porto, Faculdade de Ciências, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal
M. J. SANTOS
Affiliation:
Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal Departamento de Biologia, Universidade do Porto, Faculdade de Ciências, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal
F. I. CAVALEIRO
Affiliation:
Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal Departamento de Biologia, Universidade do Porto, Faculdade de Ciências, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal
*
*Corresponding author: Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal, Portugal. E-mail: [email protected]

Summary

The reproductive strategy of Acanthochondria cornuta, a parasitic copepod with dwarf, hyperparasitic males, is described in detail. The potential impact of male parasitism on the reproductive output was evaluated by determining the size of each sex and the female's fecundity, egg size and total reproductive effort for each pair/trio throughout the four seasons of the year. Marked seasonal differences were observed in female size and reproductive output, suggesting two distinct generations, but no differences were observed for male size. No statistically significant correlations were observed between male size and any measure of reproductive effort, but females with larger males had lower fecundity. A trade-off between egg number and egg size was recorded. Overall, the reproductive effort in A. cornuta seems to be determined mostly by female size, and larger females do not hold smaller males.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boxshall, G. A. (1974 a). The population dynamics of Lepeophtheirus pectoralis (Müller): seasonal variation in abundance and age structure. Parasitology 69, 361371.CrossRefGoogle ScholarPubMed
Boxshall, G. (1974 b). Lepeophtheirus pectoralis (O. F. Müller, 1776); a description, a review and some comparisons with the genus Caligus Müller, 1785. Journal of Natural History 8, 445468.CrossRefGoogle Scholar
Boxshall, G. A. and Halsey, S. H. (2004). An Introduction to Copepod Diversity. The Ray Society, London, UK.Google Scholar
Bravo, S., Erranz, F. and Lagos, C. (2009). A comparison of sea lice, Caligus rogercresseyi, fecundity in four areas in southern Chile. Journal of Fish Diseases 32, 107113.CrossRefGoogle ScholarPubMed
Cavaleiro, F. I. and Santos, M. J. (2007). Survey of the metazoan ectoparasites of the European flounder, Platichthys flesus (Linnaeus, 1758) along the North-Central Portuguese coast. Journal of Parasitology 93, 12181222.CrossRefGoogle ScholarPubMed
Cavaleiro, F. I. and Santos, M. J. (2009). Seasonality of metazoan ectoparasites in marine European flounder Platichthys flesus (Teleostei: Pleuronectidae). Parasitology 136, 855865.CrossRefGoogle ScholarPubMed
Cavaleiro, F. I. and Santos, M. J. (2011). Site selection of Acanthochondria cornuta (Copepoda: Chondracanthidae) in Platichthys flesus (Teleostei: Pleuronectidae). Parasitology 138, 10611067.CrossRefGoogle ScholarPubMed
Cavaleiro, F. I. and Santos, M. J. (2014). Egg number-egg size: an important trade-off in parasite life history strategies. International Journal of Parasitology 44, 173182.CrossRefGoogle ScholarPubMed
Charnov, E. L. (1987). Sexuality and hermaphroditism in barnacles: a natural selection approach. In Barnacle Biology (ed. Southward, A. J.), pp. 89103. A.A. Balkema, Rotterdam, The Netherlands.Google Scholar
Frade, D. G., Cavaleiro, F. I. and Santos, M. J. (2016). The reproductive effort of Lepeophtheirus pectoralis (Copepoda: Caligidae): insights into the egg production strategy of parasitic copepods. Parasitology 143, 8796.CrossRefGoogle ScholarPubMed
Ghiselin, M. T. (1974). The Economy of Nature and the Evolution of Sex. University of California Press, Berkeley, USA.Google Scholar
Gotto, V. (1962). Egg-number and ecology in commensal and parasitic copepods. Annals and Magazine of Natural History 13, 97107.CrossRefGoogle Scholar
Heegaard, P. (1947). Contribution to the phylogeny of the Arthropods. Spolia zoologica Musei hauniensis 37, 1236.Google Scholar
Heuch, P., Nordhagen, J. and Schram, T. (2000). Egg production in the salmon louse [Lepeophtheirus salmonis (Krøyer)] in relation to origin and water temperature. Aquaculture Research 31, 805814.CrossRefGoogle Scholar
Hirst, A. G. and Kiørboe, T. (2014). Macroevolutionary patterns of sexual size dimorphism in copepods. Proceedings of the Royal Society B: Biological Sciences 281, 20140739.Google ScholarPubMed
Ho, J.-S. (1970). Revision of the genera of the Chondracanthidae, a copepod family parasitic on marine fishes. Beaufortia 17, 105218.Google Scholar
Hoagland, K. E. (1978). Protandry and the evolution of environmentally-mediated sex change: a study of the Mollusca. Malacologia 17, 365391.Google Scholar
Høeg, J. T. (1992). Rhizocephala. In Microscopic Anatomy of Invertebrates, volume 9: Crustacea (ed. Harrison, F. W. and Humes, A. G.), pp. 313345. Wiley-Liss, New York, USA.Google Scholar
Humes, A. G. and Gooding, R. U. (1964). A method for studying the external anatomy of copepods. Crustaceana 6, 238240.CrossRefGoogle Scholar
Izawa, K. (1986). On the development of Parasitic Copepoda. IV. Ten species of poecilostome cyclopoids, belonging to Taeniacanthidae, Tegobomolochidae, Lichomolgidae, Philoblennidae, Myicolidae, and Chondracanthidae. Publications of the Seto Marine Biological Laboratory 31, 81162.CrossRefGoogle Scholar
Kabata, Z. (1959). Ecology of the genus Acanthochondria Oakley (Copepoda Parasitica). Journal of the Marine Biological Association of the United Kingdom 38, 249261.CrossRefGoogle Scholar
Kabata, Z. (1979). Parasitic Copepoda of British Fishes. The Ray Society, London, UK.Google Scholar
Leutert, R. (1975). Sex determination in Bonellia . In Intersexuality in the Animal Kingdom (ed. Reinboth, R.), pp. 8490. Springer-Verlag, New York, USA.CrossRefGoogle Scholar
Malecha, J. (1984). Cycle biologique de l'hirudinée rhynchobdelle Piscicola geometra L.. Hydrobiologia 118, 237243.CrossRefGoogle Scholar
Marques, J. F., Teixeira, C. and Cabral, H. (2006). Differentiation of commercially important flatfish populations along the Portuguese coast: evidence from morphology and parasitology. Fisheries Research 81, 293305.CrossRefGoogle Scholar
Nagasawa, K. (2015). Parasitic copepods of marine fish cultured in Japan: a review. Journal of Natural History 49, 28912903.CrossRefGoogle Scholar
Nagasawa, K., Bresciani, J. and Lützen, J. (1988). Morphology of Pectenophilus ornatus, new genus, new species, a Copepod Parasite of the Japanese Scallop Patinopecten yessoensis . Journal of Crustacean Biology 8, 3142.CrossRefGoogle Scholar
Neves, R. C., Cunha, M. R., Funch, P., Kristensen, R. M. and Wanninger, A. (2010). Comparative myoanatomy of cycliophoran life cycle stages. Journal of Morphology 271, 596611.CrossRefGoogle ScholarPubMed
Nordhagen, J., Heuch, P. and Schram, T. (2000). Size as indicator of origin of salmon lice Lepeophtheirus salmonis (Copepoda: Caligidae). Contributions to Zoology 69, 99108.CrossRefGoogle Scholar
Østergaard, P. (2004). Does male Chondracanthus lophii (Crustacea: Copepoda) feed? Journal of the Marine Biological Association of the United Kingdom 84, 711716.CrossRefGoogle Scholar
Østergaard, P. and Boxshall, G. A. (2004). Giant females and dwarf males: a comparative study of nuptial organs in female Chondracanthidae. Zoologischer Anzeiger 243, 6574.CrossRefGoogle Scholar
Østergaard, P., Boxshall, G. A. and Quicke, D. L. J. (2005). Dwarfs or giants? Sexual size dimorphism in Chondracanthidae (Copepoda, Poecilostomatoida). Crustaceana 78, 397408.CrossRefGoogle Scholar
Pert, C. C., Mordue (Luntz), A. J., O'Shea, B. and Bricknell, I. R. (2012). The settlement and reproductive success of Lepeophtheirus salmonis (Krøyer 1837; Copepoda: Caligidae) on atypical hosts. Aquaculture Research 43, 799805.CrossRefGoogle Scholar
Poulin, R. (1995). Clutch size and egg size in free-living and parasitic copepods: a comparative analysis. Evolution 49, 325336.CrossRefGoogle ScholarPubMed
Raibaut, A. and Trilles, J. P. (1993). The sexuality of parasitic crustaceans. Advances in Parasitology 32, 367444.CrossRefGoogle Scholar
Regan, C. T. (1925). Dwarfed males parasitic on the females in oceanic angler-fishes. Proceedings of the Royal Society of London B 97, 386400.Google Scholar
Ritchie, G., Mordue, A., Pike, A. and Rae, H. (1993). The reproductive effort of Lepeophtheirus salmonis adult females in relation to seasonal variability of temperature and photoperiod. In Pathogens of Wild and Farmed Fish: Sea Lice (ed. Boxshall, G. and Defaye, D.), pp. 153165. Ellis Horwood, Chichester, UK.Google Scholar
Rouse, G. W., Goffredi, S. K. and Vrijenhoek, R. C. (2004). Osedax: bone-eating marine worms with dwarf males. Science 305, 668671.CrossRefGoogle ScholarPubMed
Schmidt, V., Zander, S., Körting, W. and Steinhagen, D. (2003). Parasites of the flounder Platichthys flesus (L.) from the German Bight, North Sea, and their potential use in ecosystem monitoring. A. Infection characteristics of potential indicator species. Helgoland Marine Research 57, 236251.CrossRefGoogle Scholar
Tang, D., Andrews, M. and Cobcroft, J. M. (2007). The first chondracanthid (Copepoda: Cyclopoida) reported from cultured finfish, with a revised key to the species of Chondracanthus . Journal of Parasitology 93, 788795.CrossRefGoogle Scholar
Timi, J. T., Lanfranchi, A. L. and Poulin, R. (2005). Is there a trade-off between fecundity and egg volume in the parasitic copepod Lernanthropus cynoscicola? Parasitology Research 95, 14.CrossRefGoogle Scholar
Vollrath, F. (1998). Dwarf Males. Trends in Ecology & Evolution 13, 159163.CrossRefGoogle ScholarPubMed