Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T21:14:19.183Z Has data issue: false hasContentIssue false

Biological control and the theories of the interactions of populations

Published online by Cambridge University Press:  06 April 2009

W. R. Thompson
Affiliation:
Imperial Institute of Entomology, Farnham House Laboratory

Extract

Many great men have said that no science is really worthy of the name until it has attained quantitative accuracy and can express its principles and laws in mathematical form.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1939

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, V. A. (1931). The interaction between hosts and parasites. Quart. J. Math. 2, 6877.CrossRefGoogle Scholar
Bailey, V. A. (1933 a). On the interaction between several species of hosts and parasites. Proc. roy. Soc. A, 143, 7588.Google Scholar
Bailey, V. A. (1933 b). Non-continuous interaction between hosts and parasites. Proc. Camb. Phil. Soc. 29, 487–91.CrossRefGoogle Scholar
Bellevoye, & Laurent, (1897). Bull. Soc. Étude Sci. Nat. Reims, 112 pp.Google Scholar
Bodenheimer, F. S. (1928). Welche Faktoren regulieren die Individuenzahl einer Insektenart in der Natur? Biol. Zbl. 48, 714–39.Google Scholar
Bodenheimer, F. S. (1938). Problems of Animal Ecology. 183 pp. Oxford Univ. Press.Google Scholar
Brélot, M. (1931). Sur le problème biologique héréditaire de deux espèces dévorante et dévorée. Ann. Mat. sér. 4, 9, 57.CrossRefGoogle Scholar
Cameron, Ewen. (1938). A study of the natural control of the pea moth, Cydia nigricana Steph. Bull. ent. Res. 29, 277313, 11 figs., 2 pls.CrossRefGoogle Scholar
Chamberlin, T. R. (1924 a). Introduction of parasites of the alfalfa weevil into the United States. Circ. U.S. Dep. Agric. no. 301, 9 pp., 5 figs.Google Scholar
Chamberlin, T. R. (1924 b). Studies of the parasites of the alfalfa weevil in Europe. J. econ. Ent. 17, 623–32.CrossRefGoogle Scholar
Chapman, R. N. (1928). The quantitative analysis of environmental factors. Ecology, 9, 111–22.CrossRefGoogle Scholar
Chapman, R. N. (1931). Animal Ecology, with Special Reference to Insects. 464 pp., 112 figs. New York and London.Google Scholar
Chapman, R. N. (1933). The causes of fluctuations of populations of insects. Proc. Hawaii. ent. Soc. 8, 279–92, 5 pls.Google Scholar
Chapman, R. N. & Whang, W. Y. (1934). An experimental analysis of the cause of population fluctuations. Science, 80, 297–8.CrossRefGoogle ScholarPubMed
Compere, H. & Smith, H. S. (1932). The control of the citrophilus mealybug, Pseudococcus gahani, by Australian parasites. Hilgardia, 6, 585618.CrossRefGoogle Scholar
Elton, C. S. (1924 a). Periodic fluctuations in the number of animals, their causes and effects. Brit. J. exp. Biol. 2, 119.CrossRefGoogle Scholar
Elton, C. S. (1924 b). Animal Ecology. London.Google Scholar
Elton, Ch. (1929). The relation of animal numbers to climate. Con. Emp. Met., Agric. Sec.Google Scholar
Elton, Ch. (1930). Animal Ecology and Evolution. Oxford.Google Scholar
Fiske, William F. (1903). A study of the parasites of the American tent caterpillar. Tech. Bull. N. H. agric. Exp. Sta. no. 6, pp. 183–230, 6 figs.Google Scholar
Elton, Ch. (1910). Superparasitism: an important factor in the natural control of insects. J. econ. Ent. 3, 8897, 1 fig.Google Scholar
Gause, G. F. (1934). The Struggle for Existence. 163 pp., 41 figs. Baltimore.CrossRefGoogle ScholarPubMed
Goidanich, A. (1931). Gli insecta predatori e parassiti della Pyrausta nubilalis Hubn. Boll. Lab. Ent. Bologna, 4, 77218, 33 figs., 2 pls.Google Scholar
Hanson, H. S. (1937). Notes on the ecology and control of pine beetles in Great Britain. Bull. ent. Res. 28, 185236, 8 figs., 3 pls.CrossRefGoogle Scholar
Hardy, J. Eliot (1938). On biological control of the insect pests. Zvlastni otisk z Vestn. Kral. Ces. Spol. Nauk. 26 pp. Praha.Google Scholar
Hardy, J. Eliot (1939). Plutella maculipennis Curt., its natural and biological control in England. Bull. ent. Res. 29, 343–72, 10 figs., 1 pl.CrossRefGoogle Scholar
Holdaway, F. G. (1932). An experimental study of the growth of populations of the flour beetle, Tribolium confusum Duval, as affected by atmospheric moisture. Ecol. Monogr., 2, 262304.CrossRefGoogle Scholar
Howard, L. O. (1897). A study in insect parasitism: a consideration of the parasites of the white-marked tussock moth, with an account of their habits and interrelations, and with descriptions of new species. Tech. Ser. U.S. Dep. Agric. no. 5, pp. 557, 24 figs.Google Scholar
Howard, L. O. & Fiske, W. F. (1911). The importation into the United States of the parasites of the gipsy moth and the brown-tail moth. Bull. U.S. Bur. Ent. 91, 344 pp., 18 pls., 74 figs.Google Scholar
Keilin, D. & Thompson, W. R. (1915 a). Sur le cycle évolutif des Pipunculides (Diptères) parasites intracoelomiques des Typhlocybes (Homoptères). C.R. Soc. Biol., Paris, 78, 912, 11 figs.Google Scholar
Keilin, D. & Thompson, W. R. (1915 b). Sur le cycle évolutif des Dryinidae, Hymenoptères parasites des Hemiptères homoptères. C. R. Soc. Biol., Paris, 78, 83–7, 10 figs.Google Scholar
Kostitzin, V. A. (1934). Symbiose, parasitisme et évolution (étude mathématique). Actualités sci. industr. 96, Paris.Google Scholar
Kostitzin, V. A. (1937). Biologie mathématique. 222 pp. Collection Armand Colin.Google Scholar
Laing, Joyce (1937). Host-finding by insect parasites. I. Observations on the finding of hosts by Alysia manducator, Mormoniella vitripennis and Trichogramma evanescens. J. Anim. Ecol. 6, 298317, 5 figs.CrossRefGoogle Scholar
Kostitzin, V. A. (1938). Host-finding by insect parasites. II. The chance of Trichogramma evanescens finding its host. J. exp. Biol. 15, 281302, 5 figs.Google Scholar
Lloyd, D. C. (1938). A study of some factors governing the choice of hosts and distribution of progeny by the chalcid, Ooencyrtus kuvanae How. Philos. Trans. B, 229, 275322, 12 figs.Google Scholar
Lotka, A. J. (1920). Analytical notes on certain rhythmic relations in organic systems. Proc. nat. Acad. Sci., Wash., 7, 410.CrossRefGoogle Scholar
Lotka, A. J. (1923). Contribution to quantitative parasitology. J. Wash. Acad. Sci. 13, 152.Google Scholar
Lotka, A. J. (1925). Elements of Physical Biology. 30, 460 pp., 35 tabs., 72 figs., 1 chart. Baltimore: Williams and Wilkins Co.Google Scholar
Lotka, A. J. (1932). Contribution to the mathematical theory of capture. I. Conditions for capture. Proc. nat. Acad. Sci., Wash., 18, 172.CrossRefGoogle Scholar
Lotka, A. J. (1934). Théorie analytique des associations biologiques. Pt. 1, Principes. Act. Scient. Ind. 187.Google Scholar
MacLagan, D. Stewart (1932 a). An ecological study of the Lucerne flea, “Smynthurus viridis Linn.” I. Bull. ent. Res. 23, 101–45, 13 figs.CrossRefGoogle Scholar
MacLagan, D. Stewart (1932 b). An ecological study of the Lucerne flea, “Smynthurus viridis Linn.” II. Bull. ent. Res. 23, 151–90, figs. 1420.CrossRefGoogle Scholar
MacLagan, D. Stewart (1932 c). The effect of population density upon rate of reproduction with special reference to insects. Proc. roy. Soc. B, 111, 437–54, 4 figs.Google Scholar
MacLagan, D. Stewart & Dunn, E. (1935). The experimental analysis of the growth of an insect population. Proc. R. Soc. Edinb. 55, 126–39.CrossRefGoogle Scholar
Marchal, P. (1897). L'équilibre numérique des espèces et ses rélations avec les parasites chez les Insectes. C. R. Soc. Biol. Paris, 49, 129.Google Scholar
Marchal, P. (1908). The utilization of auxiliary entomophagous insects in the struggle against insect injurious to agriculture. Pop. Sci. Mon. 72, 352–70, 406–19.Google Scholar
Marchal, P. (1912). Notice sur les Travaux Scientifiques. 29 pp. Paris: Firmin-Didot et Cie.Google Scholar
Muir, F. (1914). Presidential address. Proc. Hawaii. ent. Soc. 3, 2842.Google Scholar
Nicholson, A. J. (1933). The balance of animal populations. J. Anim. Ecol. 2, 132–78.CrossRefGoogle Scholar
Nicholson, A. J. & Bailey, V. A. (1935). The balance of animal populations. Pt. 1. Proc. zool. Soc. Lond. pp. 551–98, 15 figs.CrossRefGoogle Scholar
Nielsen, J. C. (1909). Iagttagelser over entoparasitiske Muscidelarver hos Arthropoder. Ent. Medd. 9 (2nd ser. 4), 1125, 4 pls.Google Scholar
Nielsen, J. C. (19111917). Undersogelser over entoparasitiske Muscidelarver hos Arthropoder. I–IV. Vidensk. Medd. naturh. Foren. Kbh. 63, 1–26; 64, 215–48, 42 figs.; 65, 301–4, 5 figs.; 66, 211–20, 10 figs.; 67, 9–24, 27 figs.; 68, 2336, 20 figs.Google Scholar
Paillot, A. (1923). Étude morphologique et biologique de Neurotoma nemoralis L. Ann. Epiphyt. 10, 150237, 59 figs., 9 pls.Google Scholar
Parker, H. L. (1924). Recherches sur les formes post-embryonnaires des Chalcidiens. Ann. Soc. Ent. Fr. 93, 261379, 39 pls.CrossRefGoogle Scholar
Parker, H. L., Vance, A. M., Smith, H. D. & Gamkrelidze, W. (1929). Pyrausta nubilalis Hubn. in Europe: Notes on infestation and parasitism from 1926 to 1928. J. econ. Ent. 22, 688–93.CrossRefGoogle Scholar
Parsons, P. S. & Ullyett, G. C. (1936). Investigations on Trichogramma lutea Gir. as a parasite of the cotton bollworm Meliothis obsoleta Fabr. Bull. ent. Res. 27, 219–35.CrossRefGoogle Scholar
Pearl, R. (1925). The Biology of Population Growth. 260 pp. New York: Alfred A. Knopf, Inc.Google Scholar
Pearl, R. & Reed, L. J. (1920). On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proc. nat. Acad. Sci., Wash. 6, 275.CrossRefGoogle ScholarPubMed
Pérè, J. (1927). Une application nouvelle des mathématiques à la biologie. La théorie des associations biologiques. Rev. Gén. Sci. 37, 295, 337.Google Scholar
Picard, F. (1922). Parasites de Pieris brassicae L. Bull. Biol. Fr. Belg. pp. 54130.Google Scholar
Rabaud, E. (1917). Essai sur la vie et la mort des espèces. Bull. Biol. Fr. Belg. 1, 287380.Google Scholar
Rosenberg, H. T. (1934). A study of the colonization of Aphelinus mali Hald. Trans. R. ent. Soc. Lond. 82, 415–20, 2 figs.CrossRefGoogle Scholar
Salt, G. (1931). Parasites of the wheat-stem sawfly, Cephus pygmaeus Linn., in England. Bull. ent. Res. 22, 479545, 29 figs.CrossRefGoogle Scholar
Salt, G. (1932). Superparasitism by Collyria calcitrator Grav. Bull. ent. Res. 23, 211–16.CrossRefGoogle Scholar
Salt, G. (1934 a). Experimental studies in insect parasitism. I. Introduction and technique. Proc. roy. Soc. B, 114, 450–4, 2 figs., 1 pl.Google Scholar
Salt, G. (1934 b). Experimental studies in insect parasitism. II. Superparasitism. Proc. roy. Soc. B, 114, 455–77.Google Scholar
Salt, G. (1935). Experimental studies in insect parasitism. III. Host selection. Proc. roy. Soc. B, 117, 413–36, 1 fig.Google Scholar
Salt, G. (1936). Experimental studies in insect parasitism. IV. The effect of superparasitism on populations of Trichogramma evanescens. J. exp. Biol. 13, 363–75, 1 fig.CrossRefGoogle Scholar
Salt, G. (1937 a). Experimental studies in insect parasitism. V. The sense used by Trichogramma to distinguish between parasitized and unparasitized hosts. Proc. roy. Soc. B, 122, 5775.Google Scholar
Salt, G. (1937 b). The egg parasite of Sialis lutaria: A study of the influence of the host upon a dimorphic parasite. Parasitology, 29, 539–53, 5 figs.CrossRefGoogle Scholar
Salt, G. (1938). Experimental studies in insect parasitism. VI. Host suitability. Bull. ent. Res. 29, 223–46.CrossRefGoogle Scholar
Schaffner, J. V. & Griswold, C. L. (1934). Macrolepidoptera and their parasites reared from field collections in the north-eastern part of the United States. Misc. Publ. U.S. Dep. Agric. no. 188, 160 pp.Google Scholar
Silvestri, F. (1909). Contribuzioni alla Conoscenza degli insetti dannosi e dei loro simbionti. I. Galerucella dell' Olmo (Galerucella luteola F. Müll). Boll. Lab. Zool. Portici, 4, 246–89.Google Scholar
Smith, H. S. (1912). The chalcidoid genus Perilampus and its relation to the problem of parasite introduction. Tech. Ser. U.S. Bur. Ent. 19, 3369, 8 figs.Google Scholar
Smith, H. S. (1919). On some phases of insect control by the biological method. J. econ. Ent. 12, 288–92.CrossRefGoogle Scholar
Smith, H. S. (1926). The fundamental importance of life-history data in biological control work. J. econ. Ent., 19, 708–14.CrossRefGoogle Scholar
Smith, H. S. (1929 a). Multiple parasitism: its relation to the biological control of insect pests. Bull. ent. Res. 20, 141–9, 1 fig.CrossRefGoogle Scholar
Smith, H. S. (1929 b). On some phases of preventive entomology. Sci. Mon. 29, 177–84.Google Scholar
Smith, H. S. (1935). The role of biotic factors in the determination of population densities. J. econ. Ent. 28, 873–98, 5 figs.CrossRefGoogle Scholar
Smith, H. S. & Flanders, S. (1931). Is Trichogramma becoming a fad. J. econ. Ent. 24, 666–72.CrossRefGoogle Scholar
Stanley, J. (1932 a). A mathematical theory of the growth of populations of the flour beetle, Tribolium confusum Duv. Canad. J. Res. 6, 632–71, 9 figs.CrossRefGoogle Scholar
Stanley, J. (1932 b). A mathematical theory of the growth of populations of the flour beetle, Tribolium confusum Duv. II. The distribution by ages in the early stages of population growth. Canad. J. Res. 7, 426–33, 1 fig.CrossRefGoogle Scholar
Stanley, J. (1934). A mathematical theory of the growth of populations of the flour beetle, Tribolium confusum Duv. III. The effect upon the early stages of population growth of changes in the nutritive value, palatability and density of packing of the flour medium. Canad. J. Res. 11, 728–32.CrossRefGoogle Scholar
Stirrett, Geo. M. (1938). A field study of the flight, oviposition and establishment periods in the life-cycle of the European corn-borer, Pyrausta nubilalis Hubn., and the physical factors affecting them. Sci. Agric. 18, 355–69, 2 figs.; pp. 462–84, 3 figs.; pp. 536–57, 13 figs.; pp. 568–85, 3 figs.; pp. 656–83, 2 figs.Google Scholar
Thompson, W. R. (1915). Sur le cycle évolutif de Fortisia foeda, Diptère parasite d'un Lithobius. C.R. Soc. Biol., Paris, 78, 413–16, 1 pl.Google Scholar
Thompson, W. R. (1920). Sur un nouveau parasite de la Galéruque de l'Orme, Deegeeria collaris Fall. Bull. Soc. ent. Fr. pp. 181–4.Google Scholar
Thompson, W. R. (1922 a). Biologie—Théorie de l'action des parasites entomophages. Les formules mathématiques du parasitisme cyclique. C.R. Acad. Sci., Paris, 174, 1201–4.Google Scholar
Thompson, W. R. (1922 b). Entomologie—Étude mathématique de l'action des parasites entomophages. Durée du cycle parasitaire et accroissement de la proportion d'hôtes parasité. C.R. Acad. Sci., Paris, 174, 1433–5.Google Scholar
Thompson, W. R. (1922 c). Parasitologie—Étude de quelques cas simples de parasitisme cyclique chez les insectes entomophages. C.R. Acad. Sci., Paris, 174, 1647–9.Google Scholar
Thompson, W. R. (1922 d). Parasitisme—Théorie de l'action des parasites entomophages. Accroissement de la proportion d'hôtes parasités dans le parasitisme cyclique. C.R. Acad. Sci., Paris, 175, 65–8.Google Scholar
Thompson, W. R. (1923 a). La théorie mathématique de l'action des parasites entomophages. Rev. gén. Sci. par. appl. 11 pp.Google Scholar
Thompson, W. R. (1923 b). Recherches sur la biologie des Diptères parasites. Bull. Biol. 57, Fasc. 2.Google Scholar
Thompson, W. R. (1923 c). A criticism of the “sequence” theory of parasitic control. Ann. ent. Soc. Amer. 16, 115–28, 2 figs.CrossRefGoogle Scholar
Thompson, W. R. (1924). Théorie mathématique de l'action des parasites entomophages et le facteur du hasard. Ann. Fac. Sci. Marseille, (2), 2, 6989.Google Scholar
Thompson, W. R. (1927 a). A method for the approximate calculation of the progress of introduced parasites of insect pests. Bull. ent. Res. 17, 273–7.CrossRefGoogle Scholar
Thompson, W. R. (1927 b). On the effect of methods of mechanical control on the progress of introduced parasites of insect pests. Bull. ent. Res. 18, 1316.CrossRefGoogle Scholar
Thompson, W. R. (1928 a). A contribution to the study of biological control and parasite introduction in continental areas. Parasitology, 20, 90112, 5 figs.CrossRefGoogle Scholar
Thompson, W. R. (1928 b). A contribution to the study of the dipterous parasites of the European earwig (Forficula auricularia L.). Parasitology, 20, 123–58, 6 pls., 4 figs.CrossRefGoogle Scholar
Thompson, W. R. (1929 a). On the relative value of parasites and predators in the biological control of insect pests. Bull. ent. Res. 19, 343–50.CrossRefGoogle Scholar
Thompson, W. R. (1929 b). On the part played by parasites in the control of insects living in protected situations. Bull. ent. Res. 20, 457–62.CrossRefGoogle Scholar
Thompson, W. R. (1929 c). On the effect of random oviposition on the action of entomophagous parasites as agents of natural control. Parasitology, 21, 180–8.CrossRefGoogle Scholar
Thompson, W. R. (1929 d). On natural control. Parasitology, 21, 269–81.CrossRefGoogle Scholar
Thompson, W. R. (1929 e). A contribution to the study of morphogenesis in the muscoid diptera. Trans. ent. Soc. Lond. 77, 195244, 30 figs.CrossRefGoogle Scholar
Thompson, W. R. (1929 f). The natural control of Pyrausta nubilalis Hubn. in Europe. Cong. Intern. Zool. 10 (1937), 1183–95, 5 figs. Budapest.Google Scholar
Thompson, W. R. (1930 a). The biological content of insectand plant pests. E.M.B.[Publ.], no. 29. London.Google Scholar
Thompson, W. R. (1930 b). The utility of mathematical methods in relation to work on biological control. Ann. appl. Biol. 17, 641–8.Google Scholar
Thompson, W. R. (1931 a). The principles of biological control. Ann. appl. Biol. 17, 306–38.CrossRefGoogle Scholar
Thompson, W. R. (1931 b). On the reproduction of organisms with overlapping generations. Bull. ent. Res. 22, 147–72, 6 figs.CrossRefGoogle Scholar
Thompson, W. R. (1934 a). The tachinid parasites of woodlice. Parasitology, 26, 378448, 5 figs., 8 pls.CrossRefGoogle Scholar
Thompson, W. R. (1934 b). The development of a colony of Aphelinus mali Hald. Parasitology, 26, 449–53, 1 fig.CrossRefGoogle Scholar
Thompson, W. R. (1937). Science and Common Sense. London: Longmans.Google Scholar
Thompson, W. R. (1938). A dipterous parasite of Mycetophilids. Parasitology, 30, 176–80, 2 figs.CrossRefGoogle Scholar
Thompson, W. R. (1938). Mechanical thought. Sci. Progr. 33, 343.Google Scholar
Thompson, W. R. & Parker, H. L. (1927). The problem of host relations with special reference to entomophagous parasites. Parasitology, 19, 134.CrossRefGoogle Scholar
Thompson, W. R. & Parker, H. L. (1928 a). The European corn-borer and its controlling factors in Europe. Tech. Bull. U.S. Dep. Agric. 59, 62 pp., 3 figs.Google Scholar
Thompson, W. R. & Parker, H. L. (1928 b). Host selection in Pyrausta nubilalis Hubn. Bull. ent. Res. 18, 359–64.CrossRefGoogle Scholar
Thompson, W. R. & Parker, H. L. (1930). The morphology and biology of Eulimneria crassifemur, an important parasite of the European corn-borer. J. agric. Res. 40, 321–45, 7 figs.Google Scholar
Thorpe, W. H. & Candle, H. B. (1930). A study of the olfactory responses of insect parasites to the food plant of their host. Parasitology, 30, 523–8.CrossRefGoogle Scholar
Tothill, J. D. (1922). The natural control of the fall webworm (Hyphantria cunea Drury), together with an account of its several parasites. Bull. Canad. Dep. Agric. 3, n.s. (Ent. Bull. 19), 107 pp., 6 pls., 99 figs.Google Scholar
Trouvelot, B. (1924). Recherches de biologie appliquée sur la teigne des pommes de terre et ses parasites et considerations générales sur l'utilization des insectes entomophages en agriculture. Étude des conditions de pullulation des insectes. Ann. Épiphyt. 10, 1132, 4 pls., 32 figs.Google Scholar
Ullyett, G. C. (1936 a). Host selection by Microplectron fuscipennis Zett. Proc. roy. Soc. B, 120, 253–91, 6 figs.Google Scholar
Ullyett, G. C. (1936 b). Host density and the success of entomophagous parasites. Nature, Lond., 137, 742, 1 fig.CrossRefGoogle Scholar
Uvarov, B. P. (1931). Insects and climate. Trans. ent. Soc. Lond. 79, 1247. 52 figs.CrossRefGoogle Scholar
Verhulst, P. F. (1838). Notice sur la loi que la population suit dans son accroissement. Corr. Mathe. et Phys. Publ. par A. Quetelet, 10, 113.Google Scholar
Volterra, V. (1926 a). Variazioni e fluttuazioni del numero d' individui in specie animali conviventi. Mem. Acad. Lincei, ser. 6, 2, fasc. 3, pp. 31113, 18 figs.Google Scholar
Volterra, V. (1926 b). Fluctuations in the abundance of a species considered mathematically. Nature, Lond., 118, pp. 558–60.CrossRefGoogle Scholar
Volterra, V. (1927 a). Variazioni e fluttuazioni del numero d' individui in specie animali conviventi. R. Comit. Talass. It., Me., 131, 142 pp., 20 figs.Google Scholar
Volterra, V. (1927 b). Lois de fluctuation de la population de plusieurs espèces co-existant dans le même milieu. Assoc. Fr. Avan. Sci., Lyon, 1926, p. 96.Google Scholar
Volterra, V. (1927 c). Sulle fluttuazioni biologiche. R.C. Accad. Lincei, ser. 6, 5, 3.Google Scholar
Volterra, V. (1927 d). Leggi delle fluttuazioni biologiche. R.C. Accad. Lincei, ser. 6, 5, 61.Google Scholar
Volterra, V. (1927 e). Sulla periodicità delle fluttuazioni biologiche. R.C. Accad. Lincei, ser. 6, 5, 465.Google Scholar
Volterra, V. (1927 f). Variations and fluctuations of the numbers of individuals in animal species living together. J. Conseil int. Explor. Mer, 3, 3.CrossRefGoogle Scholar
Volterra, V. (1929). Sulle fluttuazioni biologiche. (Redazione a cura del Prof. A. Masotti). Rend. Seminario Matem. Fisico, Milano, 3.Google Scholar
Volterra, V. (1931 a). Leçons sur la théorie mathématique de la lutte pour la vie (rédigées par M. Brélot). Paris, Ent. Bull. Sci. Math., 2nd sér. 40.Google Scholar
Volterra, V. (1931 b). Ricerche matematiche sulle associazioni biologiche. G. Ist. ital. Attuari, 2, no. 3.Google Scholar
Volterra, V. (1934). Remarques sur la Note de M. Regnier et Mlle Lambin. C.R. Acad. Sci., Paris, 199, p. 1682.Google Scholar
Volterra, V. (1936 a). Sur la moindre action vitale. C.R. Acad. Sci., Paris, 203, 480.Google Scholar
Volterra, V. (1936 b). Les équations des fluctuations biologiques et le calcul des variations. C.R. Acad. Sci., Paris, 202, 1953.Google Scholar
Volterra, V. (1936 c). Les équations canoniques des fluctuations biologiques. C.R. Acad. Sci., Paris, 202, 2023.Google Scholar
Volterra, V. (1936 d). Sur l'intégration des équations des fluctuations biologiques. C.R. Acad. Sci., Paris, 202, 2113.Google Scholar
Volterra, V. (1936 e). Le principe de la moindre action en biologie. C.R. Acad. Sci., Paris, 203, 417.Google Scholar
Volterra, V. (1937). Applications des Mathématiques à la Biologie. Ens. Mathm. 36, 297330, 8 figs.Google Scholar
Volterra, V. (1938). Population growth, equilibria and extinction under specified breeding conditions: a development and extension of the theory of the logistic curve. Human Biol. 10, no. 1, 11 pp., 8 figs.Google Scholar
Volterra, V. & D'Ancona, U. (1931). La concorrenza vitale tra le specie nell' ambiente marino. 7th Cong. Int. Aquicult. Pêche, Paris, 1 p.Google Scholar
Volterra, V. & D'Ancona, U. (1935). Les associations biologiques au point de vue mathématique. Act. Scient. Ind. 243, 96 pp., 28 figs.Google Scholar
Walker, Marjory G. (1937). A mathematical analysis of superparasitism by Collyria calcitrator Grav. Parasitology, 24, 477503.CrossRefGoogle Scholar
Webber, R. T. & Schaffner, J. V. (1926). Host relations of Compsilura concinnata Meigen. Dept. Bull. U.S. Dept. Agric. no. 1363, pp. 132.Google Scholar