Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-04T19:19:41.528Z Has data issue: false hasContentIssue false

The application of recombinant DNA technology to problems of helminth identification

Published online by Cambridge University Press:  23 August 2011

D. Rollinson
Affiliation:
Department of Zoology, British Museum (Natural History), Cromwell Road, London SW7 5BD
T. K. Walker
Affiliation:
Department of Zoology, British Museum (Natural History), Cromwell Road, London SW7 5BD
A. J. G. Simpson
Affiliation:
Division of Parasitology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA

Extract

During the past decade, enormous technological developments have occurred in biology that have led to significant and revolutionary advances. New techniques of DNA cloning, restriction-enzyme analyses and nucleotide sequencing are providing a mass of data concerning the genomes of a wide variety of organisms. Such insights are having a great impact upon many areas of biological investigation, and would seem to be of considerable potential value for studies of taxonomy and population biology. The application of these new approaches to the characterization and identification of parasitic helminths has only recently begun, but they promise to become powerful additional tools for this purpose. Better methods of characterization are required for more precise definition of the parasites of man and domestic animals and for determining vectors and intermediate hosts as well as possible animal reservoir hosts. Moreover, a greater understanding of the genetic diversity of parasitic organisms is required since many helminths, which are morphologically similar, show marked differences in epidemiologically significant factors such as infectivity, pathogenicity, immunogenicity and drug sensitivity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, J. & Rothman, E. D. (1982). The estimation of phylogenetic relationships from DNA restriction patterns and selection of endonuclease cleavage sites. Proceedings of the National Academy of Sciences, USA 79, 3560–4.CrossRefGoogle ScholarPubMed
Arnheim, N. (1983). Concerted evolution of multigene families. In Evolution of Genes and Proteins (ed. Nei, M. and Koehn, R.). pp. 3861. Sinauer Associates.Google Scholar
Bayssadb-Dufour, Ch. (1982). Chétotaxies cercariennes companées de dix espè;ces de schistosomes. Annales de Parasitologie 57, 467–85.Google Scholar
Bielka, H., Schultz, I. & Bottger, M. (1968). Isolation and properties of DNA from eggs and gastrulae of Ascaris lumbricoides. Biochemica et Biophysica Acta 157, 209–12.CrossRefGoogle ScholarPubMed
Boissezon, B. & Jelnes, J. E. (1982). Isoenzyme studies on cercariae from monoinfections and adult worms of Schistosoma mansoni (10 isolates) and S. rodhaini (one isolate) by horizontal polyacrylamide gel electrophoresis and staining of eight enzymes. Zeitschrift für Parasitenkunde 67, 185–96.CrossRefGoogle ScholarPubMed
Carter, C. E., Wells, J. R. & MacInnis, A. J. (1972). DNA from an aerobic adult Ascaris lumbricoides and Hymenolepis diminuta mitochondria isolated by zonal centrifugation. Biochimica et Biophysica Acta 262, 135–44.Google Scholar
Clegg, M. T. & Epperson, B. K. (1985). Recent developments in population genetics. Advances in Genetics 23, 235–69.CrossRefGoogle Scholar
Coen, E. S., Thoday, J. M. & Dover, G. A. (1982). Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogaster. Nature, London 295, 564–8.CrossRefGoogle ScholarPubMed
Curran, J., Baillie, D. L. & Webster, J. M. (1985). Use of genomic DNA restriction fragment length differences to identify nematode species. Parasitology 90, 137–44.CrossRefGoogle Scholar
Dover, G., Grown, S., Coen, E., Dallas, J., Strachan, T. & Trick, M. (1982). The dynamics of genome evolution and species differentiation. In Genome Evolution (ed. Dover, G. A. and Flavell, R. B.), pp. 344–72. New York: Academic Press.Google Scholar
Fletcher, M., Lo Verde, P. T. & Kuntz, R. E. (1981). Electrophoretic differences between Schistosoma mansoni and S. rodhaini. Journal of Parasitology 67, 593–5.CrossRefGoogle ScholarPubMed
Fletcher, M., Lo Verde, P. T. & Richards, C. S. (1981). Schistosoma mansoni: electrophoretic characterisation of strains selected for different levels of infectivity to snails. Experimental Parasitology 52, 362–70.CrossRefGoogle ScholarPubMed
Fletcher, M., Lo Verde, P. T. & Woodruff, D. S. (1981). Genetic variation in Schistosoma mansoni: enzyme polymorphisms in populations from Africa, Southwest Asia, South America and the West Indies. American Journal of Tropical Medicine and Hygiene 30, 406–21.CrossRefGoogle ScholarPubMed
Fletcher, M., Woodruff, D. S. & Lo Verde, P. T. (1980). Genetic differentiation between Schistosoma mekongi and S. japonicum: an electrophoretic study. The Mekong Schistosome. Malacological Review, Suppl. 2, 113–22.Google Scholar
Grossman, A. I., McKenzie, R. & Cain, G. D. (1980). Sex heterochromatin in Schistosoma mansoni. Journal of Parasitology 66, 368–70.CrossRefGoogle ScholarPubMed
Hillyer, G. V. (1974). Buoyant density and thermal denaturation profiles of schistosome DNA. Journal of Parasitology 60, 725–7.CrossRefGoogle ScholarPubMed
Imbert-Establet, D., Rollinson, D. & Ross, G. (1984). Schistosoma mansoni: sélection de génotypes et leurs maintenance par transplantations sporocystiques. Comptes Rendus de l'Académie de Science de Paris 299, série III, 459–62.Google Scholar
Jelnes, J. E. (1983). Phosphoglucose isomerase: a sex-linked character in Schistosoma mansoni. Journal of Parasitology 69, 780–1.CrossRefGoogle ScholarPubMed
Keulen, H.Van Lo Verde, P. T., Bobek, L. A, & Rekosh, D. M. (1985). Organisation of the ribosomal RNA genes in Schistosoma mansoni. Molecular and Biochemical Parasitology 15, 215–30.CrossRefGoogle ScholarPubMed
Kilejian, A. & MacInnis, A. J. (1976). Density distribution of DNA from parasitic helminths with special reference to Ascaris lumbricoides. Rice University Studies 62, 161–74.Google Scholar
Long, E. O. & Dawid, I. B. (1980). Repeated genes in eukaryotes. Annual Review of Biochemistry 49, 727–64.Google Scholar
Mahon, R. J. & Schiff, C. J. (1978). Electrophoresis to distinguish Schistosoma haematobium and S. mattheei cercariae emerging from Bulinus snails. Journal of Parasitology 64, 372–3.CrossRefGoogle ScholarPubMed
Massamba, N. W. & Williams, R. O. (1984). Distinction of African trypanosome species using nucleic acid hybridization. Parasitology 88, 5565.Google Scholar
McCutchan, T. F., Simpson, A. J. G., Mullins, J. A., Sher, A., Nash, T. E., Lewis, F. & Richards, C. (1984). Differentiation of schisotosomes by species, strain and sex using cloned DNA markers. Proceedings of the National Academy of Sciences, USA 81, 889–93.Google Scholar
McManus, D. P. & Macpherson, C. N. L. (1984). Strain characterisation in the hydatid organism Echinococcus granulosus: current status and new perspectives. Annales of Tropical Medicine and Parasitology 78, 193–8.CrossRefGoogle ScholarPubMed
McManus, D. P. & Simpson, A. J. G. (1985). Identification of the Echinococcus (hydatid disease) organisms using cloned DNA markers. Molecular and Biochemical Parasitology 17, 171–8.Google Scholar
McReynolds, L. A., Desimone, S. M. & Williams, S. A. (1985). Cloning and comparison of repeated DNA sequences from the human filarial parasite Brugia malayi and the animal parasite Brugia pahangi. Proceedings of the National Academy of Sciences, USA (in the Press).Google Scholar
Menzel, M. Y. & Short, R. B. (1960). Pachytene chromosomes in three species of schistosomes; sex and autosomal bivalents in males and females. Journal of Heredity 51, 212.CrossRefGoogle Scholar
Nelson, G. S. (1984). Problems in the identification of parasites and their vectors in relation to disease control. Tropical Disease Research Series 5, 726, Geneva: UNDP/World Bank/WHO.Google Scholar
Pitchford, R. J. (1959). Cattle schistosomiasis in man in the Eastern Transvaal. Transactions of the Royal Society of Tropical Medicine and Hygiene 53, 285–90.CrossRefGoogle ScholarPubMed
Pitchford, R. J. (1961). Observations on a possible hybrid between the two schistosomes. S. haematobium and S. mattheei. Transactions of the Royal Society of Tropical Medicine and Hygiene 55, 4451.CrossRefGoogle ScholarPubMed
Rollinson, D. (1984). Recent advances in the characterisation of schistosomes and their intermediate hosts. Tropical Disease Research Series 5, 401–41, Geneva: UNDP/World Bank/WHO.Google Scholar
Rollinson, D., Imbert-Establet, D. & Ross, G. C. (1986). Schistosoma mansoni from naturally infected Rattus rattus in Guadeloupe: identification, prevalence and enzyme polymorphism. Parasitology (in the Press).CrossRefGoogle Scholar
Rollinson, D. & Southgate, V. R. (1985). Schistosome and snail populations: genetic variability and parasite transmission. In Ecology and Genetics of Host–Parasite Interactions (ed. Rollinson, D. and Anderson, R. M.), pp. 91109. London: Academic Press.Google Scholar
Rose, A.M., Baillie, D. L., Candido, E. P. M., Beckenbach, K. A. & Nelson, D. (1982). The linkage mapping of cloned restriction fragment length differences in Caenorhabditis elegans. Molecular and General Genetics 188, 286–91.CrossRefGoogle Scholar
Short, R. B. & Menzel, M. Y. (1960). Chromosomes of nine species of schistosomes. Journal of Parasitology 46, 273–87.CrossRefGoogle ScholarPubMed
Short, R. B., Menzel, M. Y. & Pathak, S. (1979). Somatic chromosomes of Schistosoma mansoni. Journal of Parasitology 65, 471–3.CrossRefGoogle ScholarPubMed
Sibley, C. G. & Ahlquist, J. E. (1984). The phylogeny of the hominoid primates, as indicated by DNA–DNA hybridisation. Journal of Molecular Evolution 20, 215.CrossRefGoogle Scholar
Simmons, J. E., Buteau, G. H., MacInnis, A. J. & Kilejian, A. (1972). Characterisation and hybridisation of DNA's of Gyrocotylidean parasites of Chimaeroid fishes. International Journal for Parasitology 2, 273–8.Google Scholar
Simpson, A. J. G., Dame, J. B., Lewis, F. A. & McCutchan, T. F. (1984). The arrangement of ribosomal RNA genes in Schistosoma mansoni. Identification of polymorphic structural variants. European Journal of Biochemistry 139, 41–5.Google Scholar
Simpson, A. J. G. & McCutchan, T. F. (1984). The use of cloned DNA to distinguish strains and species of schistosome. Tropical Disease Research Series 5, 442–51. Geneva: UNDP/World Bank/WHO.Google Scholar
Simpson, A. J. G., Sher, A. & McCutchan, T. F. (1982). The genome of Schistosoma mansoni: isolation of DNA, its size, bases and repetitive sequences. Molecular and Biochemical Parasitology 6, 125–37.CrossRefGoogle ScholarPubMed
Sinclair, J. H. & Brown, D. D. (1971). Retention of common nucleotide sequences in the ribosomal deoxyribonucleic acid of eukaryotes and some of their physical characteristics. Biochemistry 10, 2761–9.CrossRefGoogle ScholarPubMed
Southgate, V. R., Rollinson, D., Ross, G. C. & Knowles, R. J. (1982). Mating behaviour in mixed infections of Schistosoma haematobium and S. intercalatum. Journal of Natural History 16, 491–6.CrossRefGoogle Scholar
Templeton, A. R. (1983). Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37, 221–44.CrossRefGoogle Scholar
Tobler, H. R., Smith, K. D. & Ursprung, H. (1972). Molecular aspects of chromatin elimination in Ascaris lumbricoides. Developmental Biology 27, 190203.CrossRefGoogle ScholarPubMed
Vercruysse, J., Southgate, V. R. & Rollinson, D. (1984). Schistosoma curassoni Brumpt, 1931 in sheep and goats in Senegal. Journal of Natural History 18, 969–76.CrossRefGoogle Scholar
Wirth, F. & McMahon Pratt, D. (1982). Rapid identification of Leishmania species by specific hybridisation of kinetoplast DNA in cutaneous lesions. Proceedings of the National Academy of Sciences, USA 79, 69997003.CrossRefGoogle ScholarPubMed
Wright, C. A., Rollinson, D. & Goll, P. H. (1979). Parasites in Bulinus senegalensis (Mollusca: Planorbidae) and their detection. Parasitology 79, 95105.Google Scholar
Wright, C. A. & Ross, G. C. (1980). Hybrids between Schistosoma haematobium and S. mattheei and their identification by isoelectric focusing of enzymes. Transactions of the Royal Society of Tropical Medicine and Hygiene 74, 326–32.Google Scholar
Wright, C. A. & Ross, G. C. (1983). Enzymes in Schistosoma haematobium. Bulletin of the World Health Organization 61, 307–16.Google ScholarPubMed
Wright, C. A. & Southgate, V. R. (1976). Hybridisation of schistosomes and some of its implications. In Genetic Aspects of Host-Parasite Relationships (ed. Taylor, A. E. R. and Muller, R.), pp. 5586. Oxford: Blackwell Scientific Publications Ltd. Symposia of the British Society for Parasitology 14, 55–86.Google Scholar
Wright, C. A., Southgate, V. R. & Ross, G. C. (1979). Enzymes in Schistosoma intercalatum and the relative status of the Lower Guinea and Zaire strains of the parasite. International Journal for Parasitology 9, 523–8.Google Scholar