Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T21:11:25.456Z Has data issue: false hasContentIssue false

Analysis of worm burdens in experimental schistosomiasis

Published online by Cambridge University Press:  06 April 2009

A. J. C. Fulford
Affiliation:
Molteno Laboratories of Parasitology, Tennis Court Road, Cambridge CB2 1QP
F. Yeang
Affiliation:
Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA

Summary

The techniques of generalized linear modelling were applied to worm burdens of 2268 mice artificially infected with Schistosoma mansoni and treated with oxamniquine and/or praziquantel. Models which maximized the Poisson likelihood were shown to be superior to those assuming either a log Normal or negative binomial error structure. Use of the models to calculate and compare ED values of 8 strains of S. mansoni, detect abnormal dose response and synergism and to pool data from several experiments is illustrated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. & Crombie, J. A. (1985). Experimental studies of age-intensity and age-prevalence profiles of infection: Schistosoma mansoni in snails and mice. In Ecology and Genetics of Host-Parasite Interactions (ed. Rollinson, D. and Anderson, R. M.), p. 126. London: Academic Press.Google Scholar
Anscombe, F. J. (1949). The statistical analysis of insect counts based on the negative binomial distribution. Biometrics 15, 165–73.CrossRefGoogle Scholar
Baker, R. J., Pierce, C. B. & Pierce, J. M. (1980). Wadley's problem with controls. The GLIM Newsletter, 3rd issue, Dec. 1980, 32–5.Google Scholar
Coles, G. C., Bruce, J. I., Kinoti, G. K., Mutahi, W. T., Dias, E. P., Katz, N. (1986). Drug resistance in schistosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 347.CrossRefGoogle ScholarPubMed
Dias, L. C., Pedro, J. R., Rigo, E., Goto, M. N. F. & Matra, G. L. (1978). Linhagem humana de Schistosoma mansoni resistente a esquistossomicidas. Revista de Saude Publica de Sao Paulo 12, 110.CrossRefGoogle Scholar
Dobson, A. J. (1983). An Introduction to Statistical Modelling. London: Chapman and Hall.CrossRefGoogle Scholar
Gönnert, R. & Andrews, P. (1977). Praziquantel, a new broad spectrum antischistisomal agent. Zeitschrift für Parasitenkunde 52, 129–50.CrossRefGoogle Scholar
Gönnert, R. & Vogel, H. (1955). The relationship between the results of therapy and the strain of parasite and host in experimental schistosomiasis. Zeitschrift für Tropenmedizin und Parasitologie 6, 193–8.Google Scholar
Hill, J. (1956). Chemotherapeutic studies with laboratory infects of Schistosoma mansoni. Annals of Tropical Medicine and Parasitology 50, 3948.CrossRefGoogle ScholarPubMed
Jansma, W. B., Rogers, S. H., Liu, C. L., Bueding, E. (1977). Experimentally produced resistance of Schistosoma mansoni to hycanthone. American Journal of Tropical Medicine and Hygiene 26, 926–36.CrossRefGoogle ScholarPubMed
Jewsbury, J. M. (1972). Experimental chemoprophylaxis against schistosomiasis. I. Introduction and rationale. Annals of Tropical Medicine and Parasitology 66, 409–19.CrossRefGoogle ScholarPubMed
Lee, H. G., Cheever, A. W. & Fairweather, W. R. (1971). Influence of the parasite strain on the chemotherapy of murine infections with Schistosoma mansoni. Bulletin of the World Health Organization 45, 147–55.Google ScholarPubMed
McCullagh, P. & Nelder, J. A. (1983). Generalized Linear Models. Monographs on Statistics and Applied Probability. London: Chapman and Hall.CrossRefGoogle Scholar
Mood, A. M., Graybill, F. A. & Boes, D. C. (1974). Introduction to the Theory of Statistics, 3rd edn. Tokyo: McGraw-Hill Kogakusha.Google Scholar
Nelder, J. A. & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society, A 135, 370–84.CrossRefGoogle Scholar
Shaw, J. R. & Brammer, K. W. (1983). The treatment of experimental schistosomiasis with a combination of oxamniquine and praziquantel. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 3940.Google Scholar
Smithers, S. R. & Terry, R. J. (1965). The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms. Parasitology 55, 695700.CrossRefGoogle ScholarPubMed
Taylor, M. G. & Nelson, G. S. (1971). A comparison of the susceptibility to Niridazole of two geographical strains of Schistosoma mansoni in mice, with a note on the susceptibility of S. mattheei. Transactions of the Royal Society of Tropical Medicine and Hygiene 65, 169–74.CrossRefGoogle ScholarPubMed
Wedderburn, R. W. M. (1972). Quasi-likelihood functions, generalised linear models and the Gauss-Newton method. Biometrika 64, 439–47.Google Scholar
Yeang, F. (1987). Schistosoma mansoni strain differences in susceptibility to anti-schistosomal drugs. Ph.D. thesis, University of Liverpool.Google Scholar
Yeang, F., Marshall, I. & Huggins, M. (1987). Oxamniquine resistance in Schistosoma mansoni: fact or fiction. Annals of Tropical Medicine and Parasitology 81, 337–9.CrossRefGoogle ScholarPubMed