Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T19:16:28.523Z Has data issue: false hasContentIssue false

Analysis of mixed parasite populations of Theileria sergenti using cDNA probes encoding a major piroplasm surface protein

Published online by Cambridge University Press:  06 April 2009

T. Matsuba
Affiliation:
Department of Epizootiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060
H. Kubota
Affiliation:
Department of Epizootiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060
M. Tanaka
Affiliation:
Department of Epizootiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060 Kyoto Biken Laboratories, Uji, Kyoto 611, Japan
M. Hattori
Affiliation:
Department of Epizootiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060
M. Murata
Affiliation:
Department of Epizootiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060
C. Sugimoto
Affiliation:
Department of Epizootiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060
M. Onuma
Affiliation:
Department of Epizootiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060

Summary

The gene for the 32 kDa surface protein (p32) of Theileria sergenti was cloned into λgt11 and its nucleotide sequence was determined. The gene encodes a protein of 283 amino acids as deduced from its nucleotide sequence with a 22 residue N-terminal signal peptide. Using this cDNA as a probe we have isolated another two clones from a cDNA library with a CDM8 vector system derived from the same parasite stock. Comparison with three cDNA clones revealed differential polyadenylation and differences in sequences of non-coding regions. Within the coding regions, there were nucleotide transitions which affected the Pst I-restriction site, and one of the transitions was also accompanied by an amino acid substitution (Ala to Gly). Southern blot analysis showed hybridization pattern changes among the parasites isolated from individual calves at different times after infection. From these results, we conclude that at least 3 genetically different parasite populations may coexist, and that transition to predominant parasite populations might occur during persistent infections in a host, possibly to evade the host immune responses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anders, R. & Smythe, J. A. (1989). Polymorphic antigens in Plasmodium falciparum. Blood 74, 1865–975.CrossRefGoogle ScholarPubMed
Ardeshir, F., Flint, E. J., Richman, S. J. & Reese, R. T. (1987). A 75 kDa merozoite surface protein of P. falciparum which is related to the 70 kDa heat shock protein. EMBO Journal 6, 493–9.CrossRefGoogle Scholar
Aruffo, A. & Seed, B. (1987). Molecular cloning a CD28 cDNA by a high-efficiency COS cell expression system. Proceedings of the National Academy of Sciences, USA 84, 8573–7.CrossRefGoogle ScholarPubMed
Auffray, C. & Rougeon, F. (1980). Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. European Journal of Biochemistry 107, 303–14.CrossRefGoogle ScholarPubMed
Baltz, T., Giroud, C., Bringaud, F., Eisen, H., Jacquemot, C. & Roth, C. W. (1991). Exposed epitopes on a Trypanosoma equiperdum variant surface glycoprotein altered by point mutations. EMBO Journal 10, 1653–9.CrossRefGoogle ScholarPubMed
Biggs, B. A., Gooze, L., Wycherley, K., Wollish, W., Southwell, B., Leech, J. H. & Brown, G. V. (1992). Antigenic variation in Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 88, 9171–4.CrossRefGoogle Scholar
Borst, P. (1991). Molecular genetics of antigenic variation. In Immunoparasitology Today (ed. Ash, C. & Gallagher, R. B.) pp. A29–A33. Cambridge: Elsevier Trends Journals.Google Scholar
Chou, P. Y. & Fasman, G. D. (1978). Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology 47, 45147.Google ScholarPubMed
Conrad, P. A., Ole-Moiyoi, O. K., Baldwin, C. L., Dolan, T. T., O’Callaghan, C. J., Njamunggeh, R. E. G., Grootenhuis, J. G., Stagg, D. A., Leitch, B. L. & Young, A. S. (1989). Characterization of buffalo-derived theilerial parasites with monoclonal antibodies and DNA probes. Parasitology 98, 179–88.CrossRefGoogle ScholarPubMed
Coppel, R. L. (1992). Repeat structure in a Plasmodium falciparum protein (MESA) that binds human erythrocyte protein 4.1. Molecular and Biochemical Parasitology 50, 335–48.CrossRefGoogle Scholar
Dame, J. B., Williams, J. L., McCutchan, T. F., Weber, J. L., Wirtz, R. A., Hochmeyer, W. T., Maloy, W. L., Haynes, J. D., Schneider, I., Roberts, D., Sanders, G. S., Reddy, E. P., Diggs, C. L. & Miller, L. H. (1984). Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malarial parasite Plasmodium falciparum. Science 225, 593–9.CrossRefGoogle Scholar
Dutta, S. K., Shankarappa, B. & Mattingly-Napier, B. L. (1991). Molecular cloning and analysis of recombinant major antigens of Ehrlichia risticii. Infection and Immunity 59, 1162–9.CrossRefGoogle ScholarPubMed
Erondu, N. E. & Donelson, J. E. (1992). Differential expression of two mRNAs from a single gene encoding an HMGl-like DNA binding protein of African trypanosomes. Molecular and Biochemical Parasitology 51, 111–18.CrossRefGoogle Scholar
Findlay, J. B. C. & Geisow, M. J. (1989). Protein Sequencing: A Practical Approach. Oxford: IRL Press.Google Scholar
Friederich, E., Vancopernolle, K., Huet, C., Goethals, M., Finidori, J., Vandekerckhove, J. & Louvard, D. (1992). An actin-binding site containing a conserved motif of charged amino acid residues is essential for the morphogenic effect of villin. Cell 70, 8192.CrossRefGoogle ScholarPubMed
Harlow, E. & Lane, D. (1988). Antibodies: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Henikoff, S. (1984). Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28, 351–9.CrossRefGoogle ScholarPubMed
Knapp, B., Nau, U., Hundt, E. & Kupper, H. A. (1991). Demonstration of alternative splicing of a pre-mRNA expressed in the blood stage form of Plasmodium falciparum. Journal of Biological Chemistry 266, 7148–54.CrossRefGoogle ScholarPubMed
Kobayashi, N., Onuma, M., Kirisawa, R., Ohgitani, T., Takahashi, K., Sasaki, N. & Kawakami, Y. (1987). Monoclonal antibodies against intraerythrocytic merozoites (piroplasms) of Theileria sergenti. Japanese Journal of Veterinary Sciences 49, 697702.Google ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Matsuba, T., Sugimoto, C., Onoe, S., Kawakami, Y., Iwai, H. & Onuma, M. (1993). Changes in hybridization patterns of Theileria sergenti during infection. Veterinary Parasitology 47, 215–23.CrossRefGoogle ScholarPubMed
Miller, D. A., Curren, T. & Verma, I. M. (1984). C-fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell 36, 5160.Google ScholarPubMed
Minami, T., Fujinaga, T., Furuya, K. & Ishihara, T. (1980). Clinico-hematologic and serological comparisons of Japanese and Russian strains of Theileria sergenti. National Institute of Animal Health Quarterly 20, 4452.Google ScholarPubMed
Molano, A., Segura, C., Guzman, F., Lozada, D. & Patarroyo, M. E. (1991). In human malaria protective antibodies are directed mainly against the Lys-Glu ion pair within the Lys-Glu-Lys motif of the synthetic vaccine SPf 66. Parasite Immunology 14, 111–24.CrossRefGoogle Scholar
Noble, M., Lewis, S. A. & Cowan, N. J. (1989). The microtubule binding domain of microtubule-associated protein MAP1B contains a repeated sequence motif unrelated to that of MAP2 and Tau. Journal of Cell Biology 109, 3367–76.CrossRefGoogle ScholarPubMed
Ohgitani, T., Okabe, T. & Sasaki, N. (1987). Antigenic properties of Theileria sergenti in ELISA serodiagnosis. Japanese Journal of Veterinary Sciences 49, 531–4.Google ScholarPubMed
Ramamoorthy, R., Donelson, J. E., Paetz, K. E., Maybodi, M., Roberts, S. C. & Wilson, M. E. (1992). Three distinct RNAs for the surface protease gp63 are differentially expressed during development of Leishmania donovani chagasi promastigotes to an infectious form. Journal of Biological Chemistry 267, 1888–95.CrossRefGoogle Scholar
Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74, 5463–7.CrossRefGoogle ScholarPubMed
Serrano, L., Neira, J.-L., Sancho, J. & Fersht, A. R. (1992). Effect of alanine versus glycine in α-helices on protein stability. Nature, London 356, 453–5.CrossRefGoogle ScholarPubMed
Shirakata, S., Onuma, M., Kirisawa, R., Takahashi, K. & Kawakami, Y. (1989). Localization of surface antigens on Theileria sergenti merozoite by monoclonal antibodies. Japanese Journal of Veterinary Sciences 51, 831–3.Google ScholarPubMed
Snyder, M., Ellede, S., Sweetser, D., Young, R. A. & Davis, R. W. (1987). λgt11: Gene isolation with antibody probes and other applications. In Methods in Enzymology, Vol. 154 (ed. Wu, R. & Grossman, L.), pp. 107–28. San Diego: Academic Press.Google Scholar
Sugimoto, C., Sato, M., Kawazu, S., Kamio, T. & Fujisaki, K. (1991). Purification of merozoites of Theileria sergenti from infected bovine erythrocytes. Parasitology Research 77, 129–31.CrossRefGoogle ScholarPubMed
Tanaka, M., Okabe, T., Ikeda, M., Matsuba, T., Takahashi, K., Onuma, M. & Sasaki, N. (1991). Induction of anti-Theileria sergenti antibodies in calves with murine monoclonal anti-idiotype antibody. Journal of Veterinary Medical Sciences 53, 775–8.CrossRefGoogle ScholarPubMed
Uilenberg, G. (1981). Theilerial species of domestic livestock. In Advances in the Control of Theileriosis, (ed. Irvin, A. D., Cunningham, M. P. & Young, A. S.), pp. 437. The Hague, The Netherlands: Martinus Nijhoff.CrossRefGoogle Scholar
Ya-Ping, S., Alpers, M. P., Povoa, M. M. & Lal, A. A. (1992). Single amino acid variation in the ookinete vaccine antigen from field isolates of Plasmodium falciparum. Molecular and Biochemical Parasitology 50, 179–80.CrossRefGoogle Scholar
Yang, Y. F., Tan-Ariya, P., Sharma, Y. D. & Kilejian, A. (1987). The primary structure of a Plasmodium falciparum polypeptide related to heat shock proteins. Molecular and Biochemical Parasitology 26, 61–8.CrossRefGoogle ScholarPubMed
Zhuang, W. Z., Kubota, S., Sugimoto, C. & Onuma, M. (1993). Characterization of epitopes on a 32 kDa merozoite surface protein of Theileria sergenti. Parasite Immunology 15, 113–19.CrossRefGoogle ScholarPubMed