Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-17T21:14:02.284Z Has data issue: false hasContentIssue false

An ultrastructural study of excretory system development in the cercariae of Prosorhynchoides gracilescens (Rudolphi, 1819) and Prosorhynchus squamatus Odhner, 1905 (Digenea, Bucephalidae)

Published online by Cambridge University Press:  06 August 2004

I. M. PODVYAZNAYA
Affiliation:
The Laboratory of Parasitic Worms, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab., 1, St Petersburg 199034, Russia
K. V. GALAKTIONOV
Affiliation:
The White Sea Biological Station, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab., 1, St Petersburg 199034, Russia
S. W. B. IRWIN
Affiliation:
School of Biological and Environmental Sciences, University of Ulster, Shore Road, Newtownabbey, Co. Antrim BT37 0QB, Northern Ireland

Abstract

The ultrastructure of the developing excretory system of Prosorhynchoides gracilescens and Prosorhynchus squamatus cercariae is described. The development pattern was similar in both species. In early embryos the two main collecting tubes were composed of a layer of cells which were wrapped around the lumen. Later, the tubes fused and the excretory epithelium of the fusion zone and that of the lateral caudal ducts became a syncytium. The collecting tubes in the cercarial body retained their cellular organization. As the tails grew, additional excretory pores were formed in the tail stem where thickened portions of the caudal duct epithelium contacted the surface tegument. Following this, the distal portions of the lateral caudal ducts lost contact with the primary excretory pores and progressively degenerated. Excretory atrium development started with differentiation of secretory active cytons peripheral to the fusion zone. These cells gave rise to cytoplasmic extensions that penetrated the fusion zone wall to eventually form a continuous cytoplasmic layer. This layer eventually replaced some of the fusion zone excretory epithelium and became the lining of the excretory atrium. The anterior end of the fusion zone differentiated into an excretory bladder and a short posterior portion gave rise to the caudal vesicle.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

GALAKTIONOV, K. V. & DOBROVOLSKIJ, A. A. ( 1987). Hermaphroditic Generation of Trematodes. ‘Nauka’ Publications, Leningrad (in Russian).
GALAKTIONOV, K. V. & DOBROVOLSKIJ, A. A. ( 2003). The Biology and Evolution of Trematodes. Kluwer Academic Publishers, Dordrecht, London.CrossRef
HALTON, D. W. & McCRAE, J. M. ( 1985). Development of the tegument and alimentary tract in a digenetic trematode, Fellodistomum fellis. Parasitology 90, 193204.CrossRefGoogle Scholar
HUSSEY, K. L. ( 1941). Comparative embryological development of the excretory system in digenetic trematodes. Transactions of the American Microscopical Society 60, 171210.CrossRefGoogle Scholar
HUSSEY, K. L. ( 1943). Further studies on the comparative embryological development of the excretory system in digenetic trematodes. Transactions of the American Microscopical Society 62, 271279.CrossRefGoogle Scholar
KNISKERN, V. B. ( 1952). Studies on the trematode family Bucephalidae Poche, 1907. Part 2. The life history of Rhipidocotyle septpapillata Krull, 1934. Transactions of the American Microscopical Society 71, 317340.Google Scholar
KRUPA, P. L., COUSINEAU, G. H. & BAL, A. K. ( 1969). Electron microscopy of the excretory vesicle of a trematode cercaria. The Journal of Parasitology 55, 9931003.CrossRefGoogle Scholar
KUNTZ, R. E. ( 1950). Embryonic development of the excretory system in fork-tailed cercariae of the schistosomes and in a blunt-tailed brachylaemid cercaria. Transactions of the American Microscopical Society 69, 120.CrossRefGoogle Scholar
KUNTZ, R. E. ( 1952). Embryonic development of the excretory system in a pleurolophocercous (Acanthostomid) cercaria, three stylet cercariae (a microcercous cercaria, a brevicaudate and a longicaudate dicrocoelid cercaria) and in a micro-caudate eucotylid cercaria. Transactions of the American Microscopical Society 71, 4582.CrossRefGoogle Scholar
MALKOVA, I. I. & GALAKTIONOV, K. V. ( 1989). Electron microscope study of microphallid cercariae excretory system (Trematoda: Microphallidae). Parasitologiya 23, 511517 (in Russian).Google Scholar
MATTHEWS, R. A. ( 1973). The life-cycle of Prosorhynchus crucibulum (Rudolphi, 1819) Odhner, 1905, and a comparison of its cercaria with that of Prosorhynchus squamatus Odhner, 1905. Parasitology 66, 133164.CrossRefGoogle Scholar
MATTHEWS, R. A. ( 1974). The life-cycle of Bucephaloides gracilescens (Rudolphi, 1819) Hopkins, 1954 (Digenea: Gasterostomata). Parasitology 68, 112.CrossRefGoogle Scholar
MEULEMAN, E. A., LYARUU, D. M., KHAN, M. A., HOLZMANN, P. J. & SMINIA, T. ( 1978). Ultrastructural changes in the body wall of Schistosoma mansoni during the transformation of a miracidium into a mother sporocyst in the snail host Biomphalaria pfeifferi. Zeitschrift für Parasitenkunde 56, 227242.CrossRefGoogle Scholar
PODVYAZNAYA, I. M. & GALAKTIONOV, K. V. ( 2004). An ultrastructural study of the cercarial excretory system in Bucephaloides gracilescens and Prosorhynchus squamatus. Journal of Helminthology (in the Press).CrossRefGoogle Scholar
POWELL, E. C. ( 1972). Optical and electron microscope studies on the excretory bladder of the supposed Epitheliocystid cercaria of Ochetosoma aniarum. Zeitschrift für Parasitenkunde 40, 1930.CrossRefGoogle Scholar
REES, F. G. ( 1977). The development of the tail and the excretory system in the cercaria of Cryptocotyle lingua (Creplin) (Digenea: Heterophyidae) from Littorina littorea (L.). Proceedings of the Royal Society of London, B 195, 425452.CrossRefGoogle Scholar
ROHDE, K. & WATSON, N. A. ( 1992). Ultrastructure of the developing protonephridial system of the cercaria of Philophthalmus sp. (Trematoda, Digenea). Parasitology Research 78, 368375.CrossRefGoogle Scholar
SMYTH, J. D. & HALTON, D. W. ( 1983). The Physiology of Trematodes. Cambridge University Press, Cambridge.
SOUTHGATE, V. R. ( 1970). Observations on the epidermis of the miracidium and on the formation of the sporocyst of Fasciola hepatica. Parasitology 61, 177190.CrossRefGoogle Scholar
WARDLE, W. J. ( 1988). A bucephalid larva, Cercaria pleuromerae n. sp. (Trematoda: Digenea), parasitizing a deepwater bivalve from the Gulf of Mexico. The Journal of Parasitology 74, 692694.Google Scholar
WOODHEAD, A. E. ( 1929). Life history studies on the trematode family, Bucephalidae. Transactions of the American Microscopical Society 48, 256275.CrossRefGoogle Scholar