Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T11:47:52.442Z Has data issue: false hasContentIssue false

Altered behaviour of carbohydrate-bound molecules and lipids in areas of the tegument of adult Schistosoma mansoni worms damaged by praziquantel

Published online by Cambridge University Press:  06 April 2009

S. F. Lima
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ
L. Q. Vieira
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ
A. Hardert
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ
J. R. Kusel
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ

Summary

By using fluorescent probes the distribution and fluid properties of lipid and saccharide-bound molecules was assessed in the tegument of praziquantel (−) treated Schistosoma mansoni adult male worms. Our results show that higher amounts of glycoproteins and/or glycolipids are exposed in damaged areas of the membrane compared with undamaged ones. At damaged regions these molecules present high lateral diffusion coefficient and mobile fraction values which suggests that after praziquantel(−) treatment they are being shed by the worm into the medium. The lateral diffusion coefficient of the lipid analogue 5'-octadecanoyl aminofluorescein is unchanged in damaged or undamaged areas but the mobile fraction is significantly reduced at damaged areas. The immunological significance of these altered surface properties is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atlas, D., Volsky, D. J. & Levitzki, A. (1980). Lateral mobility of beta-receptors involved in adenylate cyclase activation. Biochimica et Biophysica Acta 597, 64–9.CrossRefGoogle ScholarPubMed
Bennett, J. L. & Seed, J. L. (1977). Characterization and isolation of concanavalin A binding sites from the epidermis of S. mansoni, Journal of Parasitology 63, 250–8.CrossRefGoogle ScholarPubMed
Blatt, E. & Sawyer, W. H. (1984). Depth dependent quenching in micelles and membranes. Biochimica et Biophysica Acta 822, 4362.CrossRefGoogle Scholar
Brindley, P. J., Strand, M., Norden, A. P. & Sher, A. (1989). Role of the host antibody in the chemotherapeutic action of praziquantel against Schistosoma mansoni: identification of target antigens. Molecular and Biochemical Parasitology 34, 99108.CrossRefGoogle ScholarPubMed
Carafoli, E. (1975). The interaction of calcium ions with mitochondria, with special reference to the structural role of calcium in mitochondrial and other membranes. Molecular and Cellular Biochemistry 8, 133–40.CrossRefGoogle Scholar
Caulfield, J. P., Chiang, C. P., Yacono, P. W., Smith, L. A. & Golan, D. E. (1991). Low density lipoproteins bound to Schistosoma mansoni do not alter the rapid lateral diffusion or shedding of lipids In the outer surface membrane. Journal of Cell Science 99, 167–73.CrossRefGoogle ScholarPubMed
Chiang, C. P. & Caulfield, J. P. (1989 a). The binding of low human density lipoproteins to the surface of schistosomula of Schistosoma mansoni is inhibited by polyanions and reduces the binding of antischistosomal antibodies. American Journal of Pathology 134, 1007–18.Google Scholar
Chiang, C. P. & Caulfield, J. P. (1989 b). Human lipoprotein binding to schistosomula of Schistosoma mansoni: displacement by polyanions, parasite masking, and persistence in young larvae. American Journal of Pathology 135, 1015–24.Google ScholarPubMed
Farias, R. N., Bloj, B., Morero, R. D., Sinerez, F. & Trucco, R. E. (1975). Regulation of allosteric membrane bound enzymes through changes in lipid composition. Biochimica et Biophysica Acta 415, 213–51.Google Scholar
Foley, M., MacGregor, A. N., Kusel, J. R., Garland, P. B., Downie, T. & Moore, I. (1986). The lateral diffusion of lipid probes in the surface membrane of Schistosoma mansoni. Journal of Cell Biology 103, 807–18.CrossRefGoogle ScholarPubMed
Goloring, O. L., Clegg, J. A., Smithers, S. R. & Terry, R. J. (1976). Acquisition of human blood group antigens by Schistosoma mansoni. Clinical and Experimental Immunology 26, 181–7.Google Scholar
Goldstein, I. J. & Poretz, R. D. (1986). Isolation, physicochemical characterization, and carbohydrate-binding specificity of lectins. In The Lectins (ed. Liener, I. E., Sharon, N. & Goldstein, I. J.), pp. 35244. London: Academic Press.Google Scholar
Harder, A., Goossens, J. & Andrews, P. (1988). Influence of praziquantel and Ca2+ on the bilayer-isotropic-hexagonal transition of model membranes. Molecular and Biochemical Parasitology 29, 5560.CrossRefGoogle ScholarPubMed
Harnett, W. & Kusel, J. R. (1986). Increased exposure of parasite antigens at the surface of adult male Schistosoma mansoni exposed to praziquantel in vitro. Parasitology 93, 401–5.CrossRefGoogle ScholarPubMed
Jacobson, K., Ishihara, A. & Inman, R. (1987). Lateral diffusion of proteins in membranes. Annual Review of Physiology 49, 163–75.CrossRefGoogle ScholarPubMed
Kusel, J. R., Wales, A., Vieira, L. & Wu, K.-Y. (1989). Effects of irradiation and tunicamycin on the surface glycoproteins of Schistosoma mansoni. Memorias do instituto Oswaldo Cruz 84, 199205.CrossRefGoogle ScholarPubMed
Levy, M. G. & Read, C. P. (1975). Purine and pyrimidine transport in Schistosoma mansoni. Journal of Parasitology 61, 257–66.Google ScholarPubMed
Lewis, J. T., Hafeman, D. G. & McConnell, H. M. (1980). Kinetics of antibody-dependent binding of haptenated phospholipid vesicles to a macrophage-related cell line. Biochemistry 19, 5376–86.CrossRefGoogle ScholarPubMed
Lima, S. F., Vieira, L. Q., Harder, A. & Kusel, J. R. (1994). Effects of culture and praziquantel on membrane fluidity parameters of adult Schistosoma mansoni. Parasitology 109, 5764.CrossRefGoogle ScholarPubMed
Linder, E. & Huldt, G. (1982). Distribution of exposed and hidden carbohydrates of Schistosoma mansoni adult worms demonstrated by selective binding of fluorochrome-conjugated lectins. Parasitology 85, 503–9.CrossRefGoogle ScholarPubMed
MacGregor, A. N., Stott, D. I. & Kusel, J. R. (1985). Lectin binding to glycoproteins in the surface membrane of Schistosoma mansoni. Molecular and Biochemical Parasitology 16, 163–72.CrossRefGoogle ScholarPubMed
Mannery, J. F. (1966). Effects of calcium ions on biological membranes. Federation Proceedings 25, 1804–10.Google Scholar
Matsumoto, Y., Perry, G., Levini, R. J. C., Blanton, R., Mahmoud, A. A. F. & Aikawa, M. (1988). Paramyosin and actin in schistosomal teguments. Nature, London 333, 76–8.CrossRefGoogle ScholarPubMed
Moffat, D. & Kusel, J. R. (1992). Fluorescent lipid uptake and transport in adult Schistosoma mansoni. Parasitology 105, 81–9.CrossRefGoogle ScholarPubMed
Norden, A. P. & Strand, M. (1985). Identification of antigenic Schistosoma mansoni glycoproteins during the course of infection in mice and humans. American Journal of Tropical Medicine and Hygiene 34, 495507.CrossRefGoogle ScholarPubMed
Omer-Ali, P., Magee, A. I., Kelly, C. & Simpson, A. J. G. (1986). A major role for carbohydrate epitopes preferentially recognized by chronically infected mice in determination of Schistosoma mansoni schistosomulum surface antigenicity. Journal of Immunology 137, 3601–7.CrossRefGoogle Scholar
Pearce, E. J., Bash, P. F. & Sher, A. (1986). Evidence that the reduced surface antigenicity of developing Schistosoma mansoni schistosomula is due to antigen shedding rather than host molecule acquisition. Parasite Immunology 8, 7994.CrossRefGoogle ScholarPubMed
Rimon, G., Hansky, E., Braun, S. & Levitzky, A. (1978). Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity. Nature, London 276, 394–6.CrossRefGoogle ScholarPubMed
Rumjanek, F. D. (1987). Biochemistry and physiology. In The Biology of Schistosomes – From Genes to Latrines (ed. Rollinson, D. & Simpson, A. J. G.), pp. 163183. London and New York: Academic Press.Google Scholar
Sands, W. A. & Kusel, J. R. (1992). Changes in the lateral diffusion of fluorescent lipid analogues in the surface membrane of adult male Schistosoma mansoni. Molecular and Biochemical Parasitology 53, 233–40.CrossRefGoogle ScholarPubMed
Schepers, H., Brasseur, R., Goormaghtigh, E., Duquenoy, P. & Roysschaert, J. M. (1988). Mode of insertion of praziquantel and derivatives into lipid membranes. Biochemical Pharmacology 37, 1615–23.CrossRefGoogle ScholarPubMed
Shin, M. L., Paznekas, W. A. & Mayer, M. M. (1979). Effect of membrane fluidity on efficiency of sheep erythrocyte lysis by terminal complement proteins. Federation Proceedings 38, 1468 (abstract).Google Scholar
Simpson, A. J. C. & Smithers, S. R. (1980). Characterization of the exposed carbohydrates on the surface membrane of adult Schistosoma mansoni by analysis of lectin binding. Parasitology 81, 115.CrossRefGoogle ScholarPubMed
Stein, P. C. & Lumsden, R. D. (1973). Schistosoma mansoni: topochemical features of cercariae, schistosomula and adults. Experimental Parasitology 33, 499514.CrossRefGoogle ScholarPubMed
Stryer, L. (1978). Fluorescence energy transfer as a spectroscopic ruler. Annual Review of Biochemistry 47, 819–46.CrossRefGoogle ScholarPubMed
Wilson, R. A. & Barnes, P. E. (1977). The formation and turnover of the membranocalyx of the tegument of Schistosoma mansoni. Parasitology 74, 6171.CrossRefGoogle ScholarPubMed
Wilson, R. A. & Barnes, P. E. (1979). Synthesis of macromolecules by the epithelial surfaces of Schistosoma mansoni: an autoradiographic study. Parasitology 78, 295310.CrossRefGoogle ScholarPubMed