Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-19T00:17:51.612Z Has data issue: false hasContentIssue false

What has proteomics taught us about Leishmania development?

Published online by Cambridge University Press:  28 February 2012

POLINA TSIGANKOV
Affiliation:
Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
PIER FEDERICO GHERARDINI
Affiliation:
Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
MANUELA HELMER-CITTERICH
Affiliation:
Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
DAN ZILBERSTEIN*
Affiliation:
Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
*
*Corresponding author: Dan Zilberstein, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel. Tel: 972-4-8293647; Fax: 972-4-8225153; E-mail: [email protected]

Summary

Leishmania are obligatory intracellular parasitic protozoa that cycle between sand fly mid-gut and phagolysosomes of mammalian macrophages. They have developed genetically programmed changes in gene and protein expression that enable rapid optimization of cell function according to vector and host environments. During the last two decades, host-free systems that mimic intra-lysosomal environments have been devised in which promastigotes differentiate into amastigotes axenically. These cultures have facilitated detailed investigation of the molecular mechanisms underlying Leishmania development inside its host. Axenic promastigotes and amastigotes have been subjected to transcriptome and proteomic analyses. Development had appeared somewhat variable but was revealed by proteomics to be strictly coordinated and regulated. Here we summarize the current understanding of Leishmania promastigote to amastigote differentiation, highlighting the data generated by proteomics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alcolea, P. J., Alonso, A., Gomez, M. J., Sanchez-Gorostiaga, A., Moreno-Paz, M., Gonzalez-Pastor, E., Torano, A., Parro, V. and Larraga, V. (2010). Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum. BMC Genomics 11, 31. doi: 10.1186/1471-2164-11-31.CrossRefGoogle ScholarPubMed
Antoine, J. C., Prina, E., Jouanna, C. and Bongrand, P. (1990). Parasitophorous vacuoles of Leishmania amazonensis – infected macrophages maintain an acidic pH. Infecion and Immunity 58, 779787.CrossRefGoogle ScholarPubMed
Aslet, T. M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., Depledge, D. P., Fischer, S., Gajria, B., Gao, X., Gardner, M. J., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Hertz-Fowler, C., Houston, R., Innamorato, F., Iodice, J., Kissinger, J. C., Kraemer, E., Li, W., Logan, F. J., Miller, J. A., Mitra, S., Myler, P. J., Nayak, V., Pennington, C., Phan, I., Pinney, D. F., Ramasamy, G., Rogers, M. B., Roos, D. S., Ross, C., Sivam, D., Smith, D. F., Srinivasamoorthy, G., Stoeckert, C. J. Jr., Subramanian, S., Thibodeau, R., Tivey, A., Treatman, C., Velarde, G. and Wang, H. (2010). TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Research 38, D457462. doi: 10.1093/nar/gkp851.CrossRefGoogle Scholar
Barak, E., Amin-Spector, S., Gerliak, E., Goyard, S., Holland, N. and Zilberstein, D. (2005). Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response. Molecular and Biochemical Parasitology 141, 99108.CrossRefGoogle ScholarPubMed
Bates, P. A. (1994). The developmental biology of Leishmania promastigotes. Experimental Parasitology 79, 215218.CrossRefGoogle ScholarPubMed
Bates, P. A., Robertson, C. D., Tetley, L. and Coombs, G. H. (1992). Axenic cultivation and characterization of Leishmania mexicana amastigotes-like forms. Parasitology 105, 193202.CrossRefGoogle Scholar
Bengs, F., Scholz, A., Kuhn, D., and Wiese, M. (2005). LmxMPK9, a mitogen-activated protein kinase homologu affects flagellar length in Leishmania mexicana. Molecular Microbiology 55, 16061615. doi: 10.1111/j.1365-2958.2005.04498.x.CrossRefGoogle Scholar
Berman, J. D., Goad, L. J., Beach, D. H. and Holz, G. G. Jr. (1986). Effects of ketoconazole on sterol biosynthesis by Leishmania mexicana mexicana amastigotes in murine macrophage tumor cells. Molecular and Biochemical Parasitology 20, 8592.CrossRefGoogle ScholarPubMed
Berman, J. D., Holz, G. G. Jr. and Beach, D. H. (1984). Effects of ketoconazole on growth and sterol biosynthesis of Leishmania mexicana promastigotes in culture. Molecular and Biochemical Parasitology 12, 113.CrossRefGoogle ScholarPubMed
Blum, J. J. (1993). Intermediary metabolism of Leishmania. Parasitology Today 9, 118122.CrossRefGoogle ScholarPubMed
Blum, J. J. (1994). Energy metabolism in Leishmania. Journal of Bioenergetics and Biomembranes 26, 147155.CrossRefGoogle ScholarPubMed
Burchmore, R. J. and Barrett, M. P. (2001). Life in vacuoles. International Journal for Parasitology 31, 13111320.CrossRefGoogle ScholarPubMed
Cammerer, S. B., Jimenez, C., Jones, S., Gros, L., Lorente, S. O., Rodrigues, C., Rodrigues, J. C., Caldera, A., Ruiz Perez, L. M., da Souza, W., Kaiser, M., Brun, R., Urbina, J. A., Gonzalez Pacanowska, D. and Gilbert, I. H. (2007). Quinuclidine derivatives as potential antiparasitics. Antimicrobial Agents and Chemotherapy 51, 40494061. doi: 10.1128/AAC.00205-07.CrossRefGoogle ScholarPubMed
Chow, C., Cloutier, S., Dumas, C., Chou, M. N. and Papadopoulou, B. (2011). Promastigote to amastigote differentiation of Leishmania is markedly delayed in the absence of PERK eIF2alpha kinase-dependent eIF2alpha phosphorylation. Cell Microbiology 13, 10591077. doi: 10.1111/j.1462-5822.2011.01602.x.CrossRefGoogle ScholarPubMed
Debrabant, A., Joshi, M. B., Pimenta, P. F. and Dwyer, D. M. (2004). Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics. International Journal for Parasitology 34, 205217.CrossRefGoogle ScholarPubMed
Erdmann, M., Scholz, A., Melzer, I. M., Schmetz, C. and Wiese, M. (2006). Interacting protein kinases involved in the regulation of flagellar length. Molecular Biology of the Cell 17, 20352045.CrossRefGoogle ScholarPubMed
Fernandes, A. B., Neira, I., Ferreira, A. T. and Mortara, R. A. (2006). Cell invasion by Trypanosoma cruzi amastigotes of distinct infectivities: studies on signaling pathways. Parasitology Research 100, 5968.CrossRefGoogle ScholarPubMed
Field, M. C. (2005). Signalling the genome: the Ras-like small GTPase family of trypanosomatids. Trends in Parasitology 21, 447450. doi:10.1016/j.pt.2005.08.008.CrossRefGoogle ScholarPubMed
Field, M. C. and O'Reilly, A. J. (2008). How complex is GTPase signaling in trypanosomes? Trends in Parasitology 24, 253257.CrossRefGoogle ScholarPubMed
Forestier, C. L., Machu, C., Loussert, C., Pescher, P. and Spath, G. F. (2011). Imaging host cell-Leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process. Cell Host and Microbe 9, 319330.CrossRefGoogle ScholarPubMed
Ginger, M. L., Chance, M. L. and Goad, L. J. (1999). Elucidation of carbon sources used for the biosynthesis of fatty acids and sterols in the trypanosomatid Leishmania mexicana. Biochemical Journal 342, 397405.CrossRefGoogle ScholarPubMed
Glaser, T. A., Baatz, J. E., Kreishman, G. P. and Mukkada, A. J. (1988). pH homeostasis in Leishmania donovani amastigotes and promastigotes. Proceeding of the National Academy of Sciences, USA 85, 76027606.CrossRefGoogle Scholar
Glaser, T. A., Utz, G. L. and Mukkada, A. J. (1992). The plasma membrane electrical gradient (membrane potential) in Leishmania donovani promastigotes and amastigotes. Molecular and Biochemical Parasitology 51, 915.CrossRefGoogle ScholarPubMed
Gosline, S. J., Nascimento, M., McCall, L. I., Zilberstein, D., Thomas, D. Y., Matlashewski, G. and Hallett, M. (2011). Intracellular eukaryotic parasites have a distinct unfolded protein response. PLoS ONE 6, e19118. doi:10.1371/journal.pone.0019118.CrossRefGoogle ScholarPubMed
Hart, D. T. and Coombs, G. H. (1982). Leishmania mexicana: energy metabolism of amastigotes and promastigotes. Experimental Parasitology 54, 397409.CrossRefGoogle Scholar
Hem, S., Gherardini, P. F., Osorio y Fortea, J., Hourdel, V., Morales, M. A., Watanabe, R., Pescher, P., Kuzyk, M. A., Smith, D., Borchers, C. H., Zilberstein, D., Helmer-Citterich, M., Namane, A. and Spath, G. F. (2010). Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses. Proteomics 10, 38683883. doi: 10.1002/pmic.201000305.CrossRefGoogle ScholarPubMed
Holm, A., Tejle, K., Gunnarsson, T., Magnusson, K. E., Descoteaux, A. and Rasmusson, B. (2003). Role of protein kinase C alpha for uptake of unopsonized prey and phagosomal maturation in macrophages. Biochemical and Biophysical Research Communication 302, 653658.CrossRefGoogle ScholarPubMed
John von Freyend, S., Rosenqvist, H., Fink, A., Melzer, I. M., Clos, J., Jensen, O. N. and Wiese, M. (2010). LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5. International Journal for Parasitology 40, 969978. doi:10.1016/j.ijpara.2010.02.004.CrossRefGoogle ScholarPubMed
Kimblin, N., Peters, N., Debrabant, A., Secundino, N., Egen, J., Lawyer, P., Fay, M. P., Kamhawi, S. and Sacks, D. (2008). Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proceeding of the National Academy of Sciences, USA 105, 1012510130.CrossRefGoogle Scholar
Lahav, T., Sivam, D., Volpin, H., Ronen, M., Tsigankov, P., Green, A., Holland, N., Kuzyk, M., Borchers, C., Zilberstein, D. and Myler, P. J. (2011). Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB Journal 25, 515525. doi: 10.1096/fj.10-157529.CrossRefGoogle ScholarPubMed
Laxman, S. and Beavo, J. A. (2007). Cyclic nucleotide signaling mechanisms in trypanosomes: possible targets for therapeutic agents. Molecular Interventions 7, 203215.CrossRefGoogle ScholarPubMed
Lorente, S. O., Rodrigues, J. C., Jimenez Jimenez, C., Joyce-Menekse, M., Rodrigues, C., Croft, S. L., Yardley, V., de Luca-Fradley, K., Ruiz-Perez, L. M., Urbina, J., de Souza, W., Gonzalez Pacanowska, D. and Gilbert, I. H. (2004). Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. Antimicrobial Agents and Chemotherapy 48, 29372950.CrossRefGoogle ScholarPubMed
Lukacs, G. L., Rotstein, O. R. and Grinstein, S. (1991). Determinants of the phagosomal pH in macrophages. In situ assessment of vacuolar H+-ATPase activity, counterion conductance, and H+ “Leak”. Journal of Cell Biology 266, 2454024548.Google Scholar
Maere, S., Heymans, K. and Kuiper, M. (2005). BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 34483449.CrossRefGoogle Scholar
Mazareb, S., Fu, Z. Y. and Zilberstein, D. (1999). Developmental regulation of proline transport in Leishmania donovani. Experimental Parasitology 91, 341348.CrossRefGoogle ScholarPubMed
McNeely, T. B., and Turco, S. J. (1990). Requirement of lipophosphoglycan for intracellular survival of Leishmania donovani within human monocytes. Journal of Immunology 144, 27452750.CrossRefGoogle ScholarPubMed
Moraes, M. C., Jesus, T. C., Hashimoto, N. N., Dey, M., Schwartz, K. J., Alves, V. S., Avila, C. C., Bangs, J. D., Dever, T. E., Schenkman, S. and Castilho, B. A. (2007). Novel membrane-bound eIF2alpha kinase in the flagellar pocket of Trypanosoma brucei. Eukaryotic Cell 6, 19791991.CrossRefGoogle ScholarPubMed
Morales, M. A., Renaud, O., Faigle, W., Shorte, S. L. and Spath, G. F. (2007). Over-expression of Leishmania major MAP kinases reveals stage-specific induction of phosphotransferase activity. International Journal for Parasitology 37, 11871199.CrossRefGoogle ScholarPubMed
Morales, M. A., Watanabe, R., Laurent, C., Lenormand, P., Rousselle, J. C., Namane, A. and Spath, G. F. (2008). Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics 8, 350363. doi: 10.1002/pmic.200700697.CrossRefGoogle ScholarPubMed
Mottram, J. C. and Coombs, G. H. (1985). Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals. Experimental Parasitology 59, 151160.CrossRefGoogle ScholarPubMed
Mukkada, A. J., Meade, J. C., Glaser, T. A. and Bonventre, P. F. (1985). Enhanced metabolism of Leishmania donovani amastigotes at acid pH: an adaptation for intracellular growth. Science 229, 10991101.CrossRefGoogle ScholarPubMed
Mukkada, A. J., Schaefer, F. W. III., Simon, M. W. and Neu, C. (1974). Delayed in vitro utilization of glucose by Leishmania tropica promastigotes. Journal of Protozoology 21, 393397.CrossRefGoogle ScholarPubMed
Muller, I. B., Domenicali-Pfister, D., Roditi, I. and Vassella, E. (2002). Stage-specific requirement of a mitogen-activated protein kinase by Trypanosoma brucei. Molecular Biology of the Cell 13, 37873799.CrossRefGoogle ScholarPubMed
Naderer, T., Dandash, O. and McConville, M. J. (2011). Calcineurin is required for Leishmania major stress response pathways and for virulence in the mammalian host. Molecular Microbiology 80, 471480.CrossRefGoogle ScholarPubMed
Naderer, T., Ellis, M. A., Sernee, M. F., De Souza, D. P., Curtis, J., Handman, E. and McConville, M. J. (2006). Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proceeding of the National Academy of Sciences, USA 103, 55025507.CrossRefGoogle ScholarPubMed
Naderer, T., Heng, J. and McConville, M. J. (2010). Evidence that intracellular stages of Leishmania major utilize amino sugars as a major carbon source. PLoS Pathogens 6, e1001245.CrossRefGoogle ScholarPubMed
Opperdoes, F. R. and Coombs, G. H. (2007). Metabolism of Leishmania: proven and predicted. Trends in Parasitology 23, 149158.CrossRefGoogle ScholarPubMed
Paape, D., Barrios-Llerena, M. E., Le Bihan, T., Mackay, L. and Aebischer, T. (2010). Gel free analysis of the proteome of intracellular Leishmania mexicana. Molecular and Biochemical Parasitology 169, 108114.CrossRefGoogle ScholarPubMed
Paape, D., Lippuner, C., Schmid, M., Ackermann, R., Barrios-Llerena, M. E., Zimny-Arndt, U., Brinkmann, V., Arndt, B., Pleissner, K. P., Jungblut, P. R. and Aebischer, T. (2008). Transgenic, fluorescent Leishmania mexicana allow direct analysis of the proteome of intracellular amastigotes. Molecular and Cellular Proteomics 7, 16881701.CrossRefGoogle ScholarPubMed
Parsons, M., Worthey, E. A., Ward, P. N. and Mottram, J. C. (2005). Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6, 127. doi:10.1186/1471-2164-6-127.CrossRefGoogle ScholarPubMed
Pescher, P., Blisnick, T., Bastin, P. and Spath, G. F. (2011). Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation. Cell Microbiology 13, 978991. doi:10.1111/j.1462-5822.2011.01593.x.CrossRefGoogle ScholarPubMed
Rivas, L. and Chang, K. P. (1983). Intraparasitophorous Vacuolar pH of Leishmania mexicana Infected Macrophages. Biological Bulletin 165, 536537.Google Scholar
Rodrigues, J. C., Bernardes, C. F., Visbal, G., Urbina, J. A., Vercesi, A. E. and de Souza, W. (2007). Sterol methenyl transferase inhibitors alter the ultrastructure and function of the Leishmania amazonensis mitochondrion leading to potent growth inhibition. Protist 158, 447456.CrossRefGoogle ScholarPubMed
Rosenzweig, D., Smith, D., Myler, P. J., Olafson, R. W. and Zilberstein, D. (2008 a). Post-translational modification of cellular proteins during Leishmania donovani differentiation. Proteomics 8, 18431850.CrossRefGoogle ScholarPubMed
Rosenzweig, D., Smith, D., Opperdoes, F., Stern, S., Olafson, R. W. and Zilberstein, D. (2008 b). Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB Journal 22, 590602.CrossRefGoogle ScholarPubMed
Saar, Y., Ransford, A., Waldman, E., Mazareb, S., Amin-Spector, S., Plumblee, J., Turco, S. J. and Zilberstein, D. (1998). Characterization of developmentally-regulated activities in axenic amastigotes of Leishmania donovani. Molecular and Biochemical Parasitology 95, 920.CrossRefGoogle ScholarPubMed
Sacks, D. L. (1989). Metacyclogenesis in Leishmania promastigotes. Experimental Parasitology 69, 100103.CrossRefGoogle ScholarPubMed
Sacks, D. L. and Perkins, P. V. (1985). Development of infective stage Leishmania promastigotes within phlebotomine sand flies. American Journal of Tropical Medicine and Hygiene 34, 456459.CrossRefGoogle ScholarPubMed
Saunders, E. C., de Sauza, D. P., Naderer, T., Sernee, M. F., Ralton, J. E., Doyle, M. A., Macrae, J. I., Chambers, J. L., Heng, J., Nahid, A., Likic, V. A. and McConville, M. J. (2010). Central carbon metabolism of Leishmania parasites. Parasitology 137, 13031313. doi: 10.1017/S0031182010000077.CrossRefGoogle ScholarPubMed
Saxena, A., Lahav, T., Holland, N., Aggarwal, G., Anupama, A., Huang, Y., Volpin, H., Myler, P. J. and Zilberstein, D. (2007). Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Molecular and Biochemical Parasitology 152, 5365.CrossRefGoogle ScholarPubMed
Schroder, M. and Kaufman, R. J. (2005). The mammalian unfolded protein response. Annual Review of Biochemistry 74, 739789.CrossRefGoogle ScholarPubMed
Stuart, K. D., Schnaufer, A., Ernst, N. L. and Panigrahi, A. K. (2005). Complex management: RNA editing in trypanosomes. Trends in Biochemical Sciences 30, 97105.CrossRefGoogle ScholarPubMed
Swanson, M. S. and Fernandez-Moreira, E. (2002). A microbial strategy to multiply in macrophages: the pregnant pause. Traffic 3, 170177.CrossRefGoogle ScholarPubMed
Tovar, J., Wilkinson, S., Mottram, J. C. and Fairlamb, A. H. (1998). Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. Molecular Microbiology 29, 653660.CrossRefGoogle ScholarPubMed
Turco, S. J. (1988). The lipophosphoglycan of Leishmania. Parasitology Today 4, 255257.CrossRefGoogle ScholarPubMed
Urbina, J. A. (1997). Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites. Parasitology 114, 9199.CrossRefGoogle ScholarPubMed
Vince, J. E., Tull, D., Landfear, S. and McConville, M. J. (2011). Lysosomal degradation of Leishmania hexose and inositol transporters is regulated in a stage-, nutrient- and ubiquitin-dependent manner. International Journal for Parasitology 41, 791800. doi:10.1016/j.ijpara.2011.02.003.CrossRefGoogle Scholar
Vinet, A. F., Jananji, S., Turco, S. J., Fukuda, M. and Descoteaux, A. (2011). Exclusion of synaptotagmin V at the phagocytic cup by Leishmania donovani lipophosphoglycan results in decreased promastigote internalization. Microbiology 157, 26192628.CrossRefGoogle ScholarPubMed
Wang, Q., Melzer, I. M., Kruse, M., Sander-Juelch, C. and Wiese, M. (2005). LmxMPK4, a mitogen-activated protein (MAP) kinase homologue essential for promastigotes and amastigotes of Leishmania mexicana. Kinetoplastid Biology and Disease 4, 6.CrossRefGoogle ScholarPubMed
Waskiewicz, A. J. and Cooper, J. A. (1995). Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Current Opinion in Cell Biology 7, 798805.CrossRefGoogle ScholarPubMed
Wiese, M. (1998). A mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host. EMBO Journal 17, 26192628.CrossRefGoogle ScholarPubMed
Wiese, M. (2007). Leishmania MAP kinases–familiar proteins in an unusual context. International Journal for Parasitology 37, 10531062.CrossRefGoogle Scholar
Wiese, M., Kuhn, D. and Grunfelder, C. G. (2003 a). Protein kinase involved in flagellar-length control. Eukaryotic Cell 2, 769777.CrossRefGoogle ScholarPubMed
Wiese, M., Wang, Q. and Gorcke, I. (2003 b). Identification of mitogen-activated protein kinase homologues from Leishmania mexicana. International Journal for Parasitology 33, 15771587.CrossRefGoogle ScholarPubMed
Wyllie, S., Cunningham, M. L. and Fairlamb, A. H. (2004). Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. Journal of Biological Chemistry 279, 3992539932.CrossRefGoogle ScholarPubMed
Zhan, K., Vattem, K. M., Bauer, B. N., Dever, T. E., Chen, J. J. and Wek, R. C. (2002). Phosphorylation of eukaryotic initiation factor 2 by heme-regulated inhibitor kinase-related protein kinases in Schizosaccharomyces pombe is important for resistance to environmental stresses 21. Molecular and Cellular Biology 22, 71347146.CrossRefGoogle Scholar
Zilberstein, D. (2008). Physiological and biochemical aspects of Leishmania develpment. In Leishmania After the Genome: Biology and Control, (eds. Myler, P. J. and Fasel, N.), pp. 107122. New York: Horizon Scientific Press and Caiser Academic Press.Google Scholar
Zilberstein, D., Agmon, V., Schuldiner, S. and Padan, E. (1984). Escherichia coli intracellular pH, membrane potential, and cell growth. Journal of Bacteriology 158, 246252.CrossRefGoogle ScholarPubMed
Zilberstein, D., Blumenfeld, N., Liveanu, V., Gepstein, A. and Jaffe, C. L. (1991). Growth at acidic pH induces an amastigote stage-specific protein in Leishmania promastigotes. Molecular and Biochemical Parasitology 45, 175178.CrossRefGoogle ScholarPubMed
Zilberstein, D., Philosoph, H. and Gepstein, A. (1989). Maintenance of cytoplasmic pH and proton motive force in promastigotes of Leishmania donovani. Molecular and Biochemical Parasitology 36, 109118.CrossRefGoogle ScholarPubMed
Zilberstein, D. and Shapira, M. (1994). The role of pH and temperature in the development of Leishmania parasites. Annual Review of Microbiology 48, 449470.CrossRefGoogle ScholarPubMed
Supplementary material: File

Tsigankov supplementary material

Figure caption.doc

Download Tsigankov supplementary material(File)
File 20 KB
Supplementary material: Image

Tsigankov supplementary material

Figure.tif

Download Tsigankov supplementary material(Image)
Image 504.3 KB