Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T23:29:58.920Z Has data issue: false hasContentIssue false

Virulence and transmission modes of two microsporidia in Daphnia magna

Published online by Cambridge University Press:  06 April 2009

K. L. Mangin
Affiliation:
Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS
M. Lipsitch
Affiliation:
Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS
D. Ebert
Affiliation:
NERC Centre for Population Biology, Imperial College at Silwood Park, Ascot, Berks SL5 7PY

Summary

To understand the relationship between mode of transmission and virulence, we investigated 2 microsporidian parasites in Daphnia magna laboratory populations. Pleistophora intestinalis is only transmitted horizontally, while Tuzetia sp. is transmitted vertically with high efficiency from mothers to parthenogenetic male and female offspring. We were not able to transmit Tuzetia horizontally in the laboratory. Tuzetia reduces host life-time reproductive success and host survival to a much greater extent than does P. intestinalis. Tuzetia-infected hosts were rapidly outcompeted by uninfected hosts. We suspect that Tuzetia infections may persist in natural populations by an as yet undiscovered horizontal transmission. It is possible that an alternate host species may be involved. We present a mathematical model to analyse the conditions for the persistence of a parasite with perfect vertical and an additional degree of horizontal transmission. We show that horizontal and vertical transmission contribute additively to a parasite's ability to invade and persist. Since the fitness contribution of horizontal transmission increases with population size, only very low transmission probabilities per host-to-host contact are necessary for the persistence of parasites occurring in large populations such as those commonly found for Daphnia. The detection of such low rates of horizontal transmission appears unlikely under laboratory conditions since the necessary number of host-to-host (or host-to-spore) contacts is not feasible. We review mechanisms that can maintain vertically transmitted parasites in nature.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allison, A. C. (1982). Co-evolution between hosts and infectious agents and its effects on virulence. In Population Biology of Infectious Diseases (ed. Anderson, R. M. & May, R. M.), pp. 245267. New York: Springer.Google Scholar
Anderson, R. M. & May, R. M. (1981). The population dynamics of microparasites and their invertebrate hosts. Philosophical Transactions of the Royal Society of London, B 291, 451524.Google Scholar
Anderson, R. M. & May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press.CrossRefGoogle Scholar
Andreadis, T. G. (1990). Epizootiology of Ambylospora connecticus (Microsporida) in field populations of the saltmarsh mosquito; Aedes cantator; and the cyclopoid copepod; Acanthocyclops vernalis. Journal of Protozoology 37, 174–82.Google Scholar
Andreadis, T. G. (1994). Host range tests with Edhazardia aedis (Microsporida, Culicosporidae) against northern Nearctic mosquitoes. Journal of Invertebrate Pathology 64, 4651.CrossRefGoogle ScholarPubMed
Andreadis, T. G. & Hall, D. W. (1979). Significance of transovarial infections of Ambylospora sp. (Microspora: Thelohaniidae) in relation to parasite maintenance in the mosquito Culex salinarius. Journal of Invertebrate Pathology 34, 152–7.CrossRefGoogle ScholarPubMed
Aruga, H. & Nagashima, E. (1962). Generation-to-generation transmission of the cytoplasmic polyhedrosis virus of Bombyx mori (Linnaeus). Journal of Invertebrate Pathology 4, 313–20.Google Scholar
Bauer, L. S. & Nordin, G. L. (1989). Effect of Nosema fumiferanae (Microsporida) on fecundity, fertility, and progeny performance of Choristoneura fumiferana (Lepidoptera: Tortricidae). Environmental Entomology 18, 261–5.CrossRefGoogle Scholar
Bauer, L. S. & Pankratz, H. S. (1993). Nosema scripta n. sp. (Microsporida, Nosematidae), a microsporidian parasite of the cottonwood leaf beetle, Chrysomela scripta (Coleoptera, Chrysomelidae). Journal of Eukaryotic Microbiology 40, 135–41.CrossRefGoogle Scholar
Becnel, J. (1994). Life-cycles and host–parasite relationships of microsporidia in culicine mosquitos. Folia Parasitologica 41, 91–6.Google Scholar
Becnel, J. J. & Johnson, M. A. (1993). Mosquito host range and specificity of Edhazardia aedis (Microspora, Culicosporidae). Journal of the American Mosquito Control Association 9, 260–74.Google ScholarPubMed
Becnel, J. J. & Sweeney, A. W. (1990). Ambylospora trinus n. sp (Microsporida; Amblyosporidae) in the Australian mosquito Celux halifaxi (Diptera; Culicidae). Journal of Protozoology 37, 584–92.Google Scholar
Bell, G. & Burt, A. (1990). B-chromosomes: germ-line parasites which induce changes in host recombination. Parasitology 100, S19–S26.CrossRefGoogle ScholarPubMed
Berg, D. & Howe, M. (1988). Mobile DNA. Cold Spring Harbor, NY: Cold Spring Harbor Press.Google Scholar
Brooks, W. M. & Cranford, J. D. (1972). Microsporidioses of the hymenopteran parasites, Campoletis sonorensis and Cardiochiles nigriceps, larval parasites of Heliothis species. Journal of Invertebrate Pathology 20, 7794.CrossRefGoogle Scholar
Bull, J. J. (1994). The evolution of virulence. Evolution 48, 1423–37.Google Scholar
Bull, J. J., Molineux, I. J. & Rice, W. R. (1991). Selection of benevolence in a host–parasite system. Evolution 45, 875–82.Google Scholar
Busenberg, S. & Cooke, K. (1993). Vertically Transmitted Diseases: Models and Dynamics. Berlin: Springer-Verlag.Google Scholar
Cable, J. & Tinsley, R. C. (1992). Microsporidian hyperparasites and bacteria associated with Pseudodiplorchis americanus (Monogenea, Polystomatidae). Canadian Journal of Zoology 70, 523–9.Google Scholar
Clayton, D. H. & Tompkins, D. M. (1994). Ectoparasite virulence is linked to mode of transmission. Proceedings of the Royal Society, B 256, 211–17.Google Scholar
Drake, J. A. & Mooney, H. A. (1989). Biological Invasions: A Global Perspective. Chichester: John Wiley and Sons.Google Scholar
Ebert, D. (1994 a). Genetic differences in the interactions of a microsporidian parasite and 4 clones of its cyclically parthenogenetic host. Parasitology 108, 1116.Google Scholar
Ebert, D. (1994 b). Virulence and local adaptation of a horizontally transmitted parasite. Science 265, 1084–6.CrossRefGoogle ScholarPubMed
Ebert, D. (1995). The ecological interactions between a microsporidian parasite and its host Daphnia magna. Journal of Animal Ecology 64 (in the Press).CrossRefGoogle Scholar
Ewald, P. W. (1987). Transmission modes and evolution of the parasitisim–mutualism continuum. Annals of the New York Academy of Sciences 503, 295306.CrossRefGoogle ScholarPubMed
Ewald, P. W. & Schubert, J. (1989). Vertical and vector-borne transmission of insect endocytobionts and the evolution of benignity. In CRC Handbook of Insect Endocytobiosis: Morphology, Physiology, Genetics, Evolution (ed. Schwemmler, W. & Gassner, G.), pp. 2135. Boca Raton, Florida: CRC.Google Scholar
Fine, P. E. M. (1975). Vectors and vertical transmission: an epidemiologic perspective. Annals of the New York Academy of Sciences 266, 173–94.Google Scholar
Gomariz-Zilber, E. & Thomas-Orillard, M. (1993). Drosophila C virus and Drosophila hosts: a good association in various environments. Journal of Evolutionary Biology 6, 677–89.CrossRefGoogle Scholar
Green, J. (1974). Parasites and epibionts of Cladocera. Transactions of the Zoological Society, London 32, 417515.Google Scholar
Herre, E. A. (1993). Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259, 1442–5.Google Scholar
Holmes, J. C. (1982). Impact of infectious disease agents on the population growth and geographical distribution of animals. In Population Biology of Infectious Diseases (ed. Anderson, R. A. & May, R. M.), pp. 3751. New York: Springer.CrossRefGoogle Scholar
Kellen, W. R., Chapman, H. C., Clark, T. B. & Lindegren, J. E. (1965). Host–parasite relationships of some Thelohania from mosquitoes (Nosematidae: Microsporidia). Journal of Invertebrate Pathology 7, 161–6.Google Scholar
Kellen, W. R., Chapman, H. C., Clark, T. B. & Lindegren, J. E. (1966). Transovarian transmission of some Thelohania (Nosematidae: Microsporidia) in mosquitoes of California and Louisiana. Journal of Invertebrate Pathology 8, 355–9.Google Scholar
Klüttgen, B., Dulmer, U., Engels, M. & Ratte, H. T. (1994). ADaM, an artificial freshwater for the culture of zooplankton. Water Research 28, 743–6.Google Scholar
Kramer, J. P. (1965). Nosema necatrix sp. n. and Thelohania diazoma sp. n., microsporidians from the armyworm Pseudoaletia unipuncta (Haworth). Journal of Invertebrate Pathology 7,117–21.CrossRefGoogle Scholar
Lampert, W. (1993). Phenotypic plasticity of the size at first reproduction in Daphnia: the importance of maternal size. Ecology 74, 1455–66.Google Scholar
Lee, V. (1994). Behavioural modification in parasitised Daphnia magna. Master's Thesis, Oxford University.Google Scholar
Lipsitch, M., Nowak, M. A., Ebert, D. & May, R. M. (1995). The population dynamics of vertically and horizontally transmitted parasites. Proceedings of the Royal Society, B 260, 321–7.Google ScholarPubMed
Mikalakis, Y., Olivieri, I., Renaud, F. & Raymond, M. (1992). Pleiotropic action of parasites: how to be good for the host. Trends in Ecology and Evolution 7, 5963.CrossRefGoogle Scholar
Purcell, A. H., Suslow, K. G. & Klein, M. (1994). Transmission via plants of an insect pathogenic bacterium that does not multiply or move in plants. Microbiol Ecology 27, 1926.CrossRefGoogle ScholarPubMed
Raina, S. K., Das, S., Rai, M. M. & Khurad, A. M. (1995). Transovarial transmission of Nosema locustae (Microsporida, Nosematidae) in the migratory locust Locusta migratoriodes. Parasitology Research 81, 3844.CrossRefGoogle Scholar
Read, A. F. (1994). The evolution of virulence. Trends in Microbiology 2, 73–6.CrossRefGoogle ScholarPubMed
Roughgarden, J. (1979). Theory of Population Genetics and Evolutionary Ecology: an Introduction. New York: Macmillan.Google Scholar
Sprague, V., Becnel, J. J. & Hazard, E. I. (1992). Taxonomy of Phylum Microspora. Critical Reviews in Microbiology 18, 285395.Google Scholar
Stearns, S. C. (1992). The Evolution of Life History. Oxford: Oxford University Press.Google Scholar
Stewart, F. M. & Levin, B. R. (1977). The population biology of bacterial plasmids: a priori conditions for the existence of conjugationally transmitted factors. Genetics 87, 209–28.Google Scholar
Stirnadel, H. A. (1994). Daphnia – Mikroparasiten Interaktionen: Wirtsspezifitat, Koexistenz und Epidemiologie. Master's Thesis, University of Basel, Switzerland.Google Scholar
Suzuki, S. (1994). Pathogenicity of Salmonella enteritidis in poultry. International Journal of Food Microbiology 21, 89105.Google Scholar
Tesh, R. B., Lubroth, J. & Guzman, H. (1992). Simulation of arbovirus overwintering – survival of Toscana virus (Bunyaviridae, Phlebovirus) in its natural sandfly vector Phlebotomus perniciosus. American Journal of Tropical Medicine and Hygiene 47, 574–81.Google Scholar
Thomson, H. M. (1958). Some aspects of the epidemiology of a microsporidian parasite of the spruce budworm, Choristoneura fumiferana (Clem.). Canadian Journal of Zoology 36, 309–16.Google Scholar
Zchori-Fein, E., Geden, C. J. & Rutz, D. A. (1992). Microsporidioses of Muscidifurax raptor (Hymenoptera: Pteromalidae) and other pteromalid parasitoids of muscoid flies. Journal of Invertebrate Pathology 60, 292–8.CrossRefGoogle Scholar