Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T04:05:03.067Z Has data issue: false hasContentIssue false

Study on genetic polymorphism of Leishmania infantum through the analysis of restriction enzyme digestion patterns of kinetoplast DNA

Published online by Cambridge University Press:  06 April 2009

M. C. Angelici
Affiliation:
Laboratorio di Parassitologia, Istituto Superiore di Sanitá, viale Regina Elena 299, 00161 Roma, Italy
M. Gramiccia
Affiliation:
Laboratorio di Parassitologia, Istituto Superiore di Sanitá, viale Regina Elena 299, 00161 Roma, Italy
L. Gradoni
Affiliation:
Laboratorio di Parassitologia, Istituto Superiore di Sanitá, viale Regina Elena 299, 00161 Roma, Italy

Summary

Twenty-nine Leishmania infantum strains characterized by different host source, tropism and belonging to 6 zymodemes, were examined by restriction enzyme analysis of kinetoplast DNA (kDNA) using 15 endonucleases. The enzymes which produced only one fragment revealed full identity between all the strains examined, while those producing many bands gave different electrophoretic patterns. They were interpreted with the aid of numerical analyses (cluster and multifactorial analysis). The results show a cline of genetic variability among the strains, the highest similarity being observed between most of the viscerotropic strains isolated from man, dog, black rat and sandflies. The strain agents of human cutaneous leishmaniasis show a varying degree of genetic divergence from this group, which appears more evident when characters from isoenzymes are considered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abranches, P. (1988). Reservoirs of visceral leishmaniasis. In Leishmaniasis: the Current Status and New Strategies for Control, NATO-ASI Series, Series A, Vol. 163 (ed. Hart, D. J.), New York: Plenum Press (in the Press).Google Scholar
Arnot, D. E. & Barker, D. C. (1981). Biochemical identification of cutaneous leishmanias by analysis of kinetoplast DNA. II. Sequence homologies in Leishmania kDNA. Molecular and Biochemical Parasitology 3, 4756.CrossRefGoogle ScholarPubMed
Barker, D. C., Arnot, D. E. & Butcher, J. (1982). DNA characterization as a taxonomic tool for identification of kinetoplastic flagellate protozoans. In Biochemical Characterization of Leishmania, (ed. Chance, M. L. & Walton, B. C.), pp. 139180. Geneva: UNDP/WORLD BANK/WHO.Google Scholar
Barker, D. C., Gibson, L. J., Kennedy, W. P. K., Nasser, A. A. A. A.Williams, R. H. (1986). The potential of using recombinant DNA species-specific probes for the identification of tropical Leishmania. Parasitology 91, S139S174.CrossRefGoogle Scholar
Benzecri, J. P. (1982). L'analyse des données. Vol. 2. L'analyse des correspondances. Paris: Dunod.Google Scholar
Brown, W. M. (1983). Evolution of animal mitochondrial DNA. In Evolution of Genes and Proteins (ed. Nei, M. & Koehn, R. K.), pp. 6288. Sunderland: Sinauer.Google Scholar
Dunn, G. & Everitt, B. S. (1982). An Introduction to Mathematical Taxonomy. Cambridge: Cambridge University Press.Google Scholar
Evans, D. A. (1978). Kinetoplastida. In Methods of Cultivating Parasites in Vitro, (ed. Taylor, A. E. R. & Baker, J. R.), pp. 5588. London: Academic Press.Google Scholar
Everitt, B. S. (1980). Cluster Analysis. 2nd Edn. London: Heinemann.Google Scholar
Frasch, A. C. C., Sanchez, D. O. & Stoppani, A. O. M. (1984). Homogeneous and heterogeneous mini-circlessubpopulation in Trypanosoma cruzi kinetoplast DNA. Biochimica et Biophysica Acta 782, 2633.Google Scholar
Frasch, A. C. C., Goijman, S. G., Cazzulo, J. J. & Stoppani, A. O. M. (1981). Constant and variableregions in DNA mini-circles from Trypanosoma cruzi and Trypanosoma rangeli: application to species and stock differentiation. Molecular and Biochemical Parasitology 4, 163–7.Google Scholar
Frasch, A. C. C., Hajduk, S. L., Hoeijmakers, J. H. J., Bors, P., Brunel, F. & Davison, J. (1980). The kinetoplast DNA of Trypanosoma equiperdum. Biochimica et Biophysica Acta 607, 397410.Google Scholar
Gomez&Eichelmann, M.C., Holz, G. Jr, Beach, D., Simpson, A. M. & Simpson, L. (1988). Comparison of several lizard Leishmania species and strains in termsof kinetoplast minicircle and maxicircle DNA sequences, nuclear chromosomes, and membrane lipids. Molecular and Biochemical Parasitology 27, 143–58.Google Scholar
Gramiccia, M. & Gradoni, L. (1988). Contributodell'identificazione biochimica di Leishmania all'incriminazione dei vettori delle leishmaniosi nel Bacino del Mediterraneo. Atti del XV Congresso della Societa' Italiana di Parassitologia, Foggia June 15, 1988, Parassitologia 30 (Suppl. 1), 89–90.Google Scholar
Gramiccia, M., Gradoni, L. & Angelici, M. C. (1988). Epidemiology of Mediterranean leishmaniasis by Leishmania infantum: isoenzyme and kDNA analysis for the identification of parasites from man, vectorsand reservoirs. In Leishmaniasis: the Current Status and New Strategies for Control, NA TO-ASI Series, Series A, Vol. 163 (ed.Hart, D. J.), New York: Plenum Press (in the Press).Google Scholar
Gramiccia, M., Gradoni, L. & Pozio, E. (1986). Caractèrisation biochimique de souches du complexe Leishmania infantum isolees en Italie. In Leishmania. Taxonomie et Phylogenese. Applications Èco-Epidemiologiques. {Coll. Int. CNRS/INSERM, 1984). (ed.Rioux, J. A.),. pp. 445454. Montpellier: IMEEE.Google Scholar
Gramiccia, M., Gradoni, L. & Pozio, E. (1987). Leishmania infantum sensu lato as an agent of cutaneous leishmaniasis in Abruzzi Region (Italy). Transaction ofthe Royal Society of Tropical Medicine and Hygiene 81, 235–7.CrossRefGoogle ScholarPubMed
Jackson, P. R., Lawrie, J. M., Stiteler, J. M., Hawkins, D. W., Wohlhieter, J. A. & Rowton, E. D. (1986). Detection and characterization of Leishmania species and strains from mammals and vectors byhybridization and restriction endonuclease digestion ofkinetoplast DNA. Veterinary Parasitology 20, 195215.CrossRefGoogle ScholarPubMed
Kennedy, W. P. K. (1984). Novel identification ofdifferences in the kinetoplast DNA of Leishmania isolates by recombinant DNA techniques and in situhybridisation. Molecular and Biochemical Parasitology 12, 313–25.Google Scholar
Lanotte, G., Rioux, J. A., Maazoun, R., Pasteur, N., Pratlong, F. & Lepart, J. (1981). Application de la methode numérique á la taxonomie du genre Leishmania Ross, 1903. A propos de 146 souches originaires de l'Ancien Monde. Utilisation des allozymes. Corollaires épidémiologiques et phylétiques Annales de Parasitologie Humaine et Comparee 56, 575–92.Google Scholar
Leon, W., Frasch, A. C. C., Hoeijmakers, J. H. J., Fase & Fowler, F., Borst, P., Brunel, F. & Davison, J. (1980). Maxi-circles and mini-circles in kinetoplast DNA from Trypanosoma cruzi. Biochimica et Biophysica Acta 607, 221–31.Google Scholar
Lopes, U. G., Momen, H., Grimaldi, G. Jr, Marzochi, M. C. A., Pacheco, R. & Morel, C. M. (1984). Schizodeme and zymodeme characterization of Leishmania in the investigation of foci of visceral and cutaneous leishmaniasis. Journal of Parasitology 70, 8998.CrossRefGoogle ScholarPubMed
Macina, R. A., Sanchez, D. O., Affranchino, J. L., Engel, J. C. & Frasch, A. C. C. (1985). Polymorphisms within minicircle sequence classes in the kinetoplast DNA of Trypanosoma cruzi clones. Molecular and Biochemical Parasitology 16, 6174.Google Scholar
Morel, C., Chiari, E., Plessmann Camargo, E., Mattei, D. M., Romanha, A. J. & Simpson, L. (1980). Strainsand clones of Trypanosoma cruzi can be characterized by pattern of restriction endonuclease products of kinetoplast DNA minicircles. Proceedings of theNational Academy of Sciences, USA 77, 68106814.Google Scholar
Pacheco, R. S., Lopes, U. G., Morel, C. M., Grimaldi, G. Jr & Momen, H. (1986). Schizodeme analysis of Leishmania isolates and comparison with some phenotypic techniques. In Leishmania. Taxonomie et Phylogenèse. Applications Éco-épidemiologiques (Coll. Int. CNRS/INSERM,1984). (ed. Rioux, J. A.), pp.5765. Montpellier: IMEEE.Google Scholar
Rioux, J. A., Lanotte, G., Dedet, J. P. & Martini-Dumas, J. A. (1970). Utilisation du milieu ‘;coeur-cerveau-sangde mouton’ pour la culture en masse des formes promastigotes des Leishmanies. Annales de Parasitologie Humaine et Comparèe 45, 381–4.Google Scholar
Rioux, J. A., Moreno, G., Lanotte, G., Pratlong, F., Dereure, J. & RISPAIL, P. (1986). Two episodes of cutaneous leishmanisis in man caused by differentzymodemes of Leishmania infantum s.l. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 1004–5.Google Scholar
Rohrer, S. P., Michelotti, E. F., Torri, A. F. & Hajduk, S. L. (1987). Transcription of kinetoplast DNA minicircles. Cell 49, 625–32.CrossRefGoogle Scholar
Sanchez, D. O., Frasch, A. C. C., Carrasco, A. E., Gonzalez-Cappa, S.M., De Isola, E. D. & Stoppani, A. O. M. (1984). Rapid evolution of kinetoplast DNA mini-circle subpopulations in Trypanosoma cruzi. Molecular and Biochemical Parasitology 11, 169–78.Google Scholar
Simpson, L. (1986). Kinetoplast DNA in trypanosomatid flagellates. International Review of Cytology 99, 1979.Google Scholar
Sneath, P. H. A. & Soakal, R. R. (1973). Numerical Taxonomy. San Francisco: Freeman & Co.Google Scholar
Spithill, T. W. & Grumont, R. J. (1984). Identification of species, strains and clones of Leishmania by characterization of kinetoplast DNA minicircles. Molecular and Biochemical Parasitology 12, 217–36.Google Scholar
Stuart, K. (1983). Kinetoplast DNA, mitochondrial DNA with a difference. Molecular and Biochemical Parasitology 9, 93104.Google Scholar
WORLD HEALTH ORGANIZATION. (1984). The leishmaniases. Technical Report Series no. 701, Geneva: WHO.Google Scholar