Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T19:45:50.426Z Has data issue: false hasContentIssue false

Stabilization of egg-shell in Paraplerurus sauridae (Digenea: Hemiuridae)

Published online by Cambridge University Press:  06 April 2009

K. Nellaiappan
Affiliation:
Department of Zoology, University of Madras, Madras 5
K. Ramalingam
Affiliation:
Department of Zoology, University of Madras, Madras 5

Summary

The newly formed egg-shell from eggs in the proximal part of the uterus of Paraplerurus sauridae is colourless and transparent, whereas the shell from eggs in the distal uterus is golden yellow in colour. Histochemical tests reveal the presence of phenol, protein and phenolase in the freshly formed egg-shell. The egg-shell from eggs in the distal uterus shows the property of sclerotin. Histochemical reactions, chromatography and spectrum analysis reveal the presence of a dityrosyl linkage in the egg-shell. The nature of the protein component in the egg-shell is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, S. O. (1963). Characterization of a new type of cross-linkage in resilin, a rubber-like protein. Biochimica et Biophysica Acta 69, 249–68.CrossRefGoogle ScholarPubMed
Andersen, S. O. & Weis-Fogh, T. (1964). Resilin, a rubber-like protein in arthropod cuticle. In Advances in Insect Physiology, (ed. Beament, J. W. L., Treherne, J. E. and Wigglesworth, V. B.), vol. 2, pp. 165. London and New York: Academic Press.Google Scholar
Barka, T. & Anderson, P. J. (1963). Histochemistry. Theory, Practice and Bibliography. New York, Evanston and London: Harper and Bow. Hoeber Medical Division.Google Scholar
Brown, C. H. (1950). A review of the methods available for the determination of the types of forces stabilizing structural proteins in animals. Quarterly Journal of Microscopic Science 91, 331–9.Google ScholarPubMed
Chayen, J., Bitensky, L. & Butcher, R. G. (1973). Practical Histochemistry. London, New York, Sydney and Toronto: John Wiley.Google Scholar
Fujimoto, D. (1975). Occurrence of dityrosine in cuticulin, a structural protein from Ascaris cuticle. Comparative Biochemistry and Physiology 51B, 205–7.Google Scholar
Gross, A. J. & Sizer, I. W. (1959). The oxidation of tyramine, tyrosine and related compounds by peroxidase. Journal of Biological Chemistry 234, 1611–14.CrossRefGoogle ScholarPubMed
Hackman, R. H. (1976). The interaction of cuticular proteins and some comments on their adaptation to function. In Insect Integument, (ed. Hepburn, H. R.). Amsterdam: Elsevier.Google Scholar
Hackman, R. H. & Goldberg, M. (1976). Comparative chemistry of arthropod cuticular proteins. Comparative Biochemistry and Physiology 55B, 201–6.Google Scholar
Lillie, R. D. (1965). Histopathologic Technic and Practical Histochemistry. New York, Toronto, Sydney and London: McGraw Hill.Google Scholar
Madhavi, R. (1968). Diplodiscus mehrai: chemical nature of egg-shell. Experimental Parasitology 23, 392–7.CrossRefGoogle Scholar
Madhavi, R. & Rao, K. H. (1971). Orchispirium heterovitellatum: chemical nature of the egg-shell. Experimental Parasitology 30, 345–8.CrossRefGoogle Scholar
Milton, R. F. & Waters, W. A. (1955). Methods of Quantitative Microanalysis. London: Edward Arnold.Google Scholar
Neville, A. C. (1975). Biology of the arthropod cuticle. In Zoophysiology and Ecology, vol. 4/5. (ed. Farner, D. S.), pp. 1448. Berlin, Heidelberg and New York: Springer-Verlag.Google Scholar
Nollen, P. M. (1968). Uptake and incorporation of glucose, tyrosine, leucine and thymidine by adult Philophthalmus megalurus (Cort, 1914) (Trematoda), as determined by autoradiography, Journal of Parasitology 54, 295304.CrossRefGoogle ScholarPubMed
Pearse, A. G. E. (1968). Histochemistry – Theoretical and Applied. Boston: Little, Brown and Company.Google Scholar
Pryor, M. G. M. (1940). On the hardening of the ootheca of Blatta. Proceedings of the Royal Society of London, B 128, 378–93.Google Scholar
Rainsford, K. D. (1972). The chemistry of egg-shell formation in Fasciola hepatica. Comparative Biochemistry and Physiology 43B, 983–9.Google Scholar
Ramalingam, K. (1973). The chemical nature of the egg-shell of helminths I. Absence of quinone tanning in the egg-shell of the liver-fluke, Fasciola hepatica. International Journal for Parasitology 3, 6775.CrossRefGoogle ScholarPubMed
Smith, I. (1969). Aminoacids, amines and related compunds. I. Paper chromatography. In Chromatographic and Electrophoretic Techniques, vol. I. (ed. Smith, I.), pp. 104–47. London: William Heinemann.Google Scholar
Smyth, J. D. (1976). Introduction to Animal Parasitology, second edition. London, Sydney, Auckland and Toronto: Hodder and Stoughton.Google Scholar
Smyth, J. D. & Clegg, J. A. (1959). Egg-shell formation in trematodes and cestodes. Experimental Parasitology 8, 286323.CrossRefGoogle ScholarPubMed
Stephenson, W. (1947). Physiological and histochemical observations on the adult liver fluke, Fasciola hepatica L. II. Egg-shell formation. Parasitology 38, 128–39.CrossRefGoogle Scholar
Wilson, R. A. (1967). The structure and permeability of the shell and vitelline membrane of the egg of Fasciola hepatica. Parasitology 57, 4758.CrossRefGoogle Scholar