Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T21:53:37.909Z Has data issue: false hasContentIssue false

Shrinking the lymphatic filariasis map: update on diagnostic tools for mapping and transmission monitoring

Published online by Cambridge University Press:  16 September 2014

MARIA P. REBOLLO
Affiliation:
Department of Parasitology, Liverpool School of Tropical Medicine, Centre for Neglected Tropical Diseases, Pembroke Place, Liverpool L3 5QA, UK
MOSES JOHN BOCKARIE*
Affiliation:
Department of Parasitology, Liverpool School of Tropical Medicine, Centre for Neglected Tropical Diseases, Pembroke Place, Liverpool L3 5QA, UK
*
*Corresponding author: Department of Parasitology, Liverpool School of Tropical Medicine, Centre for Neglected Tropical Diseases, Pembroke Place, Liverpool L3 5QA, UK. E-mail: [email protected]

Summary

Lymphatic filariasis (LF), which is highly endemic in 73 countries worldwide, is targeted for elimination by 2020. The strategy for achieving this goal is based on 4 sequential programmatic steps: mapping, Mass drug administration (MDA) implementation, post-MDA surveillance and verification of LF elimination. All 4 stages of the implementation process are dependent on the availability of user friendly and highly sensitive rapid diagnostic tools. By the end of 2012, 59 countries had completed mapping for LF and Eritrea was the only country yet to start the process. Rolling out new diagnostic tools to facilitate the mapping process will enable an accelerated shrinking of the LF map to zero endemic countries by 2020. When the Global Programme to Eliminate Lymphatic Filariasis was launched in 2000, diagnostic tools for LF were limited to clinical examination, detection of microfilaria (MF) by microscopy in night blood samples and detection of antibodies to native-antigen preparations. There has been a significant improvement in the traditional LF diagnostic methods in recent years and some new tools are now available. This paper provides an update on the human diagnostic tests available for LF and their current applications as tools in mapping and transmission monitoring. The values of entomological indicators and parasite detection and speciation methods applied to vector populations are also discussed.

Type
Special Issue Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aonuma, H., Yoshimura, A., Perera, N., Shinzawa, N., Bando, H., Oshiro, S., Nelson, B., Fukumoto, S. and Kanuka, H. (2009). Loop-mediated isothermal amplification applied to filarial parasites detection in the mosquito vectors: Dirofilaria immitis as a study model. Parasite and Vectors 2, 15.Google Scholar
Aonuma, H., Yoshimura, A., Kobayashi, T., Okado, K., Badolo, A., Nelson, B., Kanuka, H. and Fukumoto, S. (2010). A single fluorescence-based LAMP reaction for identifying multiple parasites in mosquitoes. Experimental Parasitology 125, 179183.Google Scholar
Bockarie, M. J., Fischer, P., Williams, S. A., Zimmerman, P. A., Griffin, L., Alpers, M. P. and Kazura, J. W. (2000). Application of a polymerase chain reaction-ELISA to detect Wuchereria bancrofti in pools of wild-caught Anopheles punctulatus in a filariasis control area in Papua New Guinea. American Journal of Tropical Medicine and Hygiene 62, 363367.Google Scholar
Bockarie, M. J., Tisch, D. J., Kastens, W., Alexander, N. D., Dimber, Z., Bockarie, F., Ibam, E., Alpers, M. P. and Kazura, J. W. (2002). Mass treatment to eliminate filariasis in Papua New Guinea. New England Journal of Medicine 347, 18411848.Google Scholar
Bockarie, M. J., Pedersen, E. M., White, G. B. and Michael, E. (2009 a). Role of vector control in the global program to eliminate lymphatic filariasis. Annual Review Entomology 54, 469487.Google Scholar
Bockarie, M. J., Taylor, M. J. and Gyapong, J. O. (2009 b). Current practices in the management of lymphatic filariasis. Expert Review Anti-Infective Therapy 7, 595605.Google Scholar
Chesnais, C. B., Missamou, F., Pion, S. D., Bopda, J., Louya, F., Majewski, A. C., Weil, G. J. and Boussinesq, M. (2013). Semi-quantitative scoring of an immunochromatographic test for circulating filarial antigen. American Journal of Tropical Medicine and Hygiene 89, 916918.Google Scholar
de Souza, D. K., Sesay, S., Moore, M. G., Ansumana, R., Narh, C. A., Kollie, K., Rebollo, M. P., Koudou, B. G., Koroma, J. B., Bolay, F. K., Boakye, D. A. and Bockarie, M. J. (2014). No evidence for lymphatic filariasis transmission in big cities affected by conflict related rural-urban migration in Sierra Leone and Liberia. PLoS Neglected Tropical Diseases 8, e2700.Google Scholar
Drame, P. M., Fink, D. L., Kamgno, J., Herrick, J. A. and Nutman, T. B. (2014). Loop-mediated isothermal amplification for rapid and semiquantitative detection of Loa loa infection. Journal of Clinical Microbiology 52, 20712077.Google Scholar
Fernandez-Soto, P., Mvoulouga, P. O., Akue, J. P., Aban, J. L., Santiago, B. V., Sanchez, M. C. and Muro, A. (2014). Development of a highly sensitive loop-mediated isothermal amplification (LAMP) method for the detection of Loa loa. PLoS ONE 9, e94664.Google Scholar
Fischer, P., Bonow, I., Supali, T., Ruckert, P. and Rahmah, N. (2005). Detection of filaria-specific IgG4 antibodies and filarial DNA, for the screening of blood spots for Brugia timori. Annals of Tropical Medicine and Parasitology 99, 5360.Google Scholar
Fischer, P., Erickson, S. M., Fischer, K., Fuchs, J. F., Rao, R. U., Christensen, B. M. and Weil, G. J. (2007). Persistence of Brugia malayi DNA in vector and non-vector mosquitoes: implications for xenomonitoring and transmission monitoring of lymphatic filariasis. American Journal of Tropical Medicine and Hygiene 76, 502507.Google Scholar
Gass, K., Beau de Rochars, M. V., Boakye, D., Bradley, M., Fischer, P. U., Gyapong, J., Itoh, M., Ituaso-Conway, N., Joseph, H., Kyelem, D., Laney, S. J., Legrand, A. M., Liyanage, T. S., Melrose, W., Mohammed, K., Pilotte, N., Ottesen, E. A., Plichart, C., Ramaiah, K., Rao, R. U., Talbot, J., Weil, G. J., Williams, S. A., Won, K. Y. and Lammie, P. (2012). A multicenter evaluation of diagnostic tools to define endpoints for programs to eliminate bancroftian filariasis. PLoS Neglected Tropical Diseases 6, e1479.Google Scholar
Hamlin, K. L., Moss, D. M., Priest, J. W., Roberts, J., Kubofcik, J., Gass, K., Streit, T. G., Nutman, T. B., Eberhard, M. L. and Lammie, P. J. (2012). Longitudinal monitoring of the development of antifilarial antibodies and acquisition of Wuchereria bancrofti in a highly endemic area of Haiti. PLoS Neglected Tropical Diseases 6, e1941.Google Scholar
Joseph, H., Maiava, F., Naseri, T., Silva, U., Lammie, P. and Melrose, W. (2011). Epidemiological assessment of continuing transmission of lymphatic filariasis in Samoa. Annals of Tropical Medicine and Parasitology 105, 567578.Google Scholar
Lancet (2014). Neglected tropical diseases: becoming less neglected. Lancet 383, 1269.Google Scholar
Laney, S. J., Buttaro, C. J., Visconti, S., Pilotte, N., Ramzy, R. M., Weil, G. J. and Williams, S. A. (2008). A reverse transcriptase-PCR assay for detecting filarial infective larvae in mosquitoes. PLoS Neglected Tropical Diseases 2, e251.Google Scholar
Laney, S. J., Ramzy, R. M., Helmy, H. H., Farid, H. A., Ashour, A. A., Weil, G. J. and Williams, S. A. (2010). Detection of Wuchereria bancrofti L3 larvae in mosquitoes: a reverse transcriptase PCR assay evaluating infection and infectivity. PLoS Neglected Tropical Diseases 4, e602.Google Scholar
Makhsin, S. R., Razak, K. A., Noordin, R., Zakaria, N. D. and Chun, T. S. (2012). The effects of size and synthesis methods of gold nanoparticle-conjugated MalphaHIgG4 for use in an immunochromatographic strip test to detect brugian filariasis. Nanotechnology 23, 495719.Google Scholar
Molyneux, D. H. (2009). Filaria control and elimination: diagnostic, monitoring and surveillance needs. Transactions of the Royal Society of Tropical Medicine and Hygiene 103, 338341.Google Scholar
Moss, D. M., Priest, J. W., Boyd, A., Weinkopff, T., Kucerova, Z., Beach, M. J. and Lammie, P. J. (2011). Multiplex bead assay for serum samples from children in Haiti enrolled in a drug study for the treatment of lymphatic filariasis. American Journal of Tropical Medicine and Hygiene 85, 229237.Google Scholar
Noordin, R., Muhi, J., Md Idris, Z., Arifin, N. and Kiyu, A. (2012). Duration of detection of anti-BmR1 IgG4 antibodies after mass-drug administration (MDA) in Sarawak, Malaysia. Tropical Biomedicine 29, 191196.Google Scholar
Poole, C. B., Tanner, N. A., Zhang, Y., Evans, T. C. Jr. and Carlow, C. K. (2012). Diagnosis of brugian filariasis by loop-mediated isothermal amplification. PLoS Neglected Tropical Diseases 6, e1948.CrossRefGoogle ScholarPubMed
Ramzy, R. M. (2002). Recent advances in molecular diagnostic techniques for human lymphatic filariasis and their use in epidemiological research. Transaction of the Royal Society of Tropical Medicine and Hygiene 96(Suppl. 1), S225S229.CrossRefGoogle ScholarPubMed
Ramzy, R. M., Farid, H. A., Kamal, I. H., Ibrahim, G. H., Morsy, Z. S., Faris, R., Weil, G. J., Williams, S. A. and Gad, A. M. (1997). A polymerase chain reaction-based assay for detection of Wuchereria bancrofti in human blood and Culex pipiens. Transactions of the Royal Society of Tropical Medicine and Hygiene 91, 156160.Google Scholar
Ramzy, R. M., El Setouhy, M., Helmy, H., Ahmed, E. S., Abd Elaziz, K. M., Farid, H. A., Shannon, W. D. and Weil, G. J. (2006). Effect of yearly mass drug administration with diethylcarbamazine and albendazole on bancroftian filariasis in Egypt: a comprehensive assessment. Lancet 367, 992999.Google Scholar
Rebollo, M. P. and Bockarie, M. J. (2013 a). Rapid diagnostics for the endgame in lymphatic filariasis elimination. American Journal of Tropical Medicine and Hygiene 89, 34.Google Scholar
Rebollo, M. P. and Bockarie, M. J. (2013 b). Toward the elimination of lymphatic filariasis by 2020: treatment update and impact assessment for the endgame. Expert Review of Anti-Infection Therapy 11, 723731.Google Scholar
Reimer, L. J., Thomsen, E. K., Tisch, D. J., Henry-Halldin, C. N., Zimmerman, P. A., Baea, M. E., Dagoro, H., Susapu, M., Hetzel, M. W., Bockarie, M. J., Michael, E., Siba, P. M. and Kazura, J. W. (2013). Insecticidal bed nets and filariasis transmission in Papua New Guinea. New England Journal of Medicine 369, 745753.Google Scholar
Samad, M. S., Itoh, M., Moji, K., Hossain, M., Mondal, D., Alam, M. S. and Kimura, E. (2013). Enzyme-linked immunosorbent assay for the diagnosis of Wuchereria bancrofti infection using urine samples and its application in Bangladesh. Parasitology International 62, 564567.CrossRefGoogle ScholarPubMed
Steel, C., Golden, A., Kubofcik, J., LaRue, N., de Los Santos, T., Domingo, G. J. and Nutman, T. B. (2013). Rapid Wuchereria bancrofti-specific antigen Wb123-based IgG4 immunoassays as tools for surveillance following mass drug administration programs on lymphatic filariasis. Clinical Vaccine Immunology 20, 11551161.Google Scholar
Takagi, H., Itoh, M., Kasai, S., Yahathugoda, T. C., Weerasooriya, M. V. and Kimura, E. (2011). Development of loop-mediated isothermal amplification method for detecting Wuchereria bancrofti DNA in human blood and vector mosquitoes. Parasitology International 60, 493497.CrossRefGoogle ScholarPubMed
Taylor, M. J., Hoerauf, A. and Bockarie, M. (2010). Lymphatic filariasis and onchocerciasis. Lancet 376, 11751185.Google Scholar
Weil, G. J. and Ramzy, R. M. (2007). Diagnostic tools for filariasis elimination programs. Trends in Parasitology 23, 7882.Google Scholar
Weil, G. J., Kastens, W., Susapu, M., Laney, S. J., Williams, S. A., King, C. L., Kazura, J. W. and Bockarie, M. J. (2008). The impact of repeated rounds of mass drug administration with diethylcarbamazine plus albendazole on bancroftian filariasis in Papua New Guinea. PLoS Neglected Tropical Diseases 2, e344.Google Scholar
Weil, G. J., Curtis, K. C., Fischer, P. U., Won, K. Y., Lammie, P. J., Joseph, H., Melrose, W. D. and Brattig, N. W. (2011). A multicenter evaluation of a new antibody test kit for lymphatic filariasis employing recombinant Brugia malayi antigen Bm-14. Acta Tropica 120 (Suppl. 1), S19S22.Google Scholar
Weil, G. J., Curtis, K. C., Fakoli, L., Fischer, K., Gankpala, L., Lammie, P. J., Majewski, A. C., Pelletreau, S., Won, K. Y., Bolay, F. K. and Fischer, P. U. (2013). Laboratory and field evaluation of a new rapid test for detecting Wuchereria bancrofti antigen in human blood. American Journal of Tropical Medicine and Hygiene 89, 1115.Google Scholar
WHO (2003). Lymphatic filariasis. Epidemiology Bulletin 25, 1415.Google Scholar
WHO (2011 a). Monitoring and Epidemiological Assessment of Mass Drug Administration: A Manual for National Elimination Programmes. World Health Organization (WHO/HTM/NTD/PCT/2011.4), Geneva.Google Scholar
WHO (2011 b). Progress toward elimination of lymphatic filariasis – Togo, 2000–2009. MMWR Morbidity and Mortality Weekly Report 60, 989991.Google Scholar
WHO (2012). Global programme to eliminate lymphatic filariasis: progress report, 2011. Weekly Epidemiological Record 87, 346356.Google Scholar
WHO (2013). Global programme to eliminate lymphatic filariasis: progress report for 2012. Weekly Epidemiological Record 88, 389399.Google Scholar
WHO (2014). Meeting of the International Task Force for Disease Eradication, January 2014. Weekly Epidemiological Record 89, 153160.Google Scholar
Wongkamchai, S., Chiangjong, W., Sinchaikul, S., Chen, S. T., Choochote, W. and Thongboonkerd, V. (2011). Identification of Brugia malayi immunogens by an immunoproteomics approach. Journal of Proteomics 74, 16071613.Google Scholar
Yahathugoda, T. C., Weerasooriya, M. V., Sunahara, T., Kimura, E., Samarawickrema, W. A. and Itoh, M. (2014). Rapid assessment procedures to detect hidden endemic foci in areas not subjected to mass drug administration in Sri Lanka. Parasitology International 63, 8793.Google Scholar