Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T14:57:05.690Z Has data issue: false hasContentIssue false

A scanning electron microscope study on the route of entry of triclabendazole into the liver fluke, Fasciola hepatica

Published online by Cambridge University Press:  10 March 2009

E. TONER
Affiliation:
Parasite Proteomics and Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
F. McCONVERY
Affiliation:
Parasite Proteomics and Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
G. P. BRENNAN
Affiliation:
Parasite Proteomics and Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
M. MEANEY
Affiliation:
Parasite Proteomics and Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
I. FAIRWEATHER*
Affiliation:
Parasite Proteomics and Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
*
*Corresponding author: Tel: +44 28 90972298. Fax: +44 28 90975877. E-mail: [email protected]

Summary

Studies have been carried out to establish the relative importance of oral and trans-tegumental uptake of triclabendazole by the liver fluke, Fasciola hepatica. Experiments were designed to block either oral uptake of drug, by use of ligatures, or trans-tegumental diffusion, by allowing the drug to bind to bovine serum albumin (BSA) in the medium. Changes to the surface morphology of the tegument and gut were assessed by scanning electron microscopy. Flukes were incubated in vitro for 24 h in TCBZ.SO at a concentration of 15 μg/ml. Tegumental disruption in ligatured and non-ligatured flukes was similar, suggesting that closing the oral route did not affect drug uptake. The gut remained unaffected by drug treatment. When BSA (30 mg/ml) was present in the medium, there was a marked decline in the level of tegumental disruption. Again, the gut retained a normal morphology. Non-ligatured flukes were also incubated for 24 h in vitro in TCBZ.SO (15 μg/ml) in the presence of red blood cells. Oral ingestion of blood was demonstrated, although the gut surface retained a normal morphology. In contrast, the tegumental surface was severely affected by the drug. The findings support previous pharmacological studies which suggest that trans-tegumental uptake of triclabendazole predominates in the liver fluke.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez, L. I., Imeperiale, F. A., Sánchez, S. F., Murno, G. A. and Lanusse, C. E. (2000). Uptake of albendazole and albendazole sulphoxide by Haemonchus contortus and Fasciola hepatica in sheep. Veterinary Parasitology 94, 7589.CrossRefGoogle ScholarPubMed
Alvarez, L. I., Mottier, M. L. and Lanusse, C. E. (2007). Drug transfer into target helminth parasites. Trends in Parasitology 23, 97104.CrossRefGoogle ScholarPubMed
Alvarez, L. I., Mottier, M. L. and Lanusse, C. E. (2004). Comparative assessment of the access of albendazole, fenbendazole and triclabendazole to Fasciola hepatica: effect of bile in the incubation medium. Parasitology 128, 7381.Google Scholar
Alvarez, L. I., Mottier, M. L., Sánchez, S. F. and Lanusse, C. E. (2001). Ex vivo diffusion of albendazole and its sulfoxide metabolite into Ascaris suum and Fasciola hepatica. Parasitology Research 87, 929934.CrossRefGoogle ScholarPubMed
Alvarez, L. I., Solana, H. D., Mottier, M. L., Virkel, G. L., Fairweather, I. and Lanusse, C. E. (2005). Altered drug influx/efflux and enhanced metabolic activity in triclabendazole-resistant liver flukes. Parasitology 131, 501510.Google Scholar
Alvarez-Sanchez, M. A., Mainar-Jaime, R. C., Perez-Garcia, J. and Rojo-Vasquez, F. A. (2006). Resistance of Fasciola hepatica to triclabendazole and albendazole in sheep in Spain. Veterinary Record 159, 424425.CrossRefGoogle ScholarPubMed
Bennett, C. E. (1975). Scanning electron microscopy of Fasciola hepatica L. during growth and maturation in the mouse. Journal of Parasitology 61, 892898.CrossRefGoogle ScholarPubMed
Buchanan, J. F., Fairweather, I., Brennan, G. P., Trudgett, A. and Hoey, E. M. (2003). Surface and internal tegumental changes induced by treatment in vitro with the sulphoxide metabolite of albendazole (‘Valbazen’). Parasitology 126, 141153.CrossRefGoogle ScholarPubMed
Cross, H. F., Renz, A. and Trees, A. J. (1998). In vitro uptake of ivermectin by adult Onchocerca ochengi. Annals of Tropical Medicine and Parasitology 92, 711720.CrossRefGoogle ScholarPubMed
Fairweather, I. (2005). Triclabendazole: new skills to unravel an old(ish) enigma. Journal of Helminthology 79, 227234.CrossRefGoogle ScholarPubMed
Fairweather, I., Holmes, S. D. and Threadgold, L. T. (1983). Fasciola hepatica: a technique for monitoring in vitro motility. Experimental Parasitology 56, 369380.Google Scholar
Fairweather, I., Threadgold, L. T. and Hanna, R. E. B. (1999). Development of Fasciola hepatica in the mammalian host. In Fasciolosis (ed. Dalton, J. P.), pp. 47111. CAB International, Wallingford, Oxon, UK.Google Scholar
Fujino, T., Uni, S., Ishii, Y. and Takada, S. (1987). Further studies on the fine structure of the gastrodermal lamellar projections in Fasciola hepatica and Paragonimus ohirai. Japanese Journal of Parasitology 36, 276283.Google Scholar
Geary, T. G., Sims, S. M., Thomas, E. M., Vanover, L., Davis, J. P., Winterrowd, C. A., Klein, R. D., Ho, N. F. H. and Thompson, D. P. (1993). Haemonchus contortus: ivermectin-induced paralysis of the pharynx. Experimental Parasitology 77, 8896.CrossRefGoogle ScholarPubMed
Halferty, L., Brennan, G. P., Hanna, R. E. B., Edgar, H. W., Meaney, M., McConville, M., Trudgett, A., Hoey, L. and Fairweather, I. (2008). Tegumental surface changes in juvenile Fasciola hepatica in response to treatment in vivo with triclabendazole. Veterinary Parasitology 155, 4958.CrossRefGoogle ScholarPubMed
Haughey, S. J. (2008). A study on the route of entry of albendazole and its sulphoxide metabolite into the liver fluke, Fasciola hepatica. M.Phil. thesis, The Queen's University of Belfast, Northern Ireland.Google Scholar
Hennessy, D. R., Lacey, E., Steel, J. W. and Prichard, R. K. (1987). The kinetics of triclabendazole disposition in sheep. Journal of Veterinary Pharmacology and Therapeutics 10, 6472.CrossRefGoogle ScholarPubMed
Ho, N. F. H., Geary, T. G., Barsuhn, C. L., Sims, S. M. and Thompson, D. P. (1990). Biophysical transport properties of the cuticle of Ascaris suum. Molecular and Biochemical Parasitology 41, 153165.Google Scholar
McConville, M., Brennan, G. P., McCoy, M., Castillo, R., Hernandez-Campos, A., Ibarra, F. and Fairweather, I. (2006). Adult triclabendazole-resistant Fasciola hepatica: surface and subsurface tegumental responses to in vitro treatment with the sulphoxide metabolite of the experimental fasciolicide compound alpha. Parasitology 133, 195208.Google Scholar
McCoy, M. A., Fairweather, I., Brennan, G. P., Kenny, J. M., Ellison, S. and Forbes, A. B. (2005). The efficacy of nitroxynil and triclabendazole administered synchronously against juvenile triclabendazole-resistant Fasciola hepatica in sheep. Research in Veterinary Sciences 78 (Suppl A), 33.Google Scholar
McKinstry, B., Fairweather, I., Brennan, G. P. and Forbes, A. B. (2003). Fasciola hepatica: tegumental surface alterations following treatment in vivo and in vitro with nitroxynil (Trodax). Parasitology Research 91, 251263.Google Scholar
McKinstry, B., Brennan, G. P., Halferty, L., Forbes, A. B. and Fairweather, I. (2007). Ultrastructural changes induced in the tegument and gut of Fasciola hepatica following in vivo and in vitro drug treatment with nitroxynil (Trodax). Parasitology Research 101, 929941.Google Scholar
Meaney, M., Fairweather, I., Brennan, G. P., Ramasamy, P. and Subramanian, P. B. (2002). Fasciola gigantica: tegumental surface changes following treatment in vitro with the sulphoxide metabolite of triclabendazole. Parasitology Research 88, 315325.CrossRefGoogle Scholar
Meaney, M., Fairweather, I., Brennan, G. P., McDowell, L. S. L. and Forbes, A. B. (2003). Fasciola hepatica: effects of the fasciolicide clorsulon in vitro and in vivo on the tegumental surface, and a comparison of the effects on young- and old-mature flukes. Parasitology Research 91, 238250.CrossRefGoogle Scholar
Meaney, M., Fairweather, I., Brennan, G. P. and Forbes, A. B. (2004). Transmission electron microscope study of the ultrastructural changes induced in the tegument and gut of Fasciola hepatica following in vivo drug treatment with clorsulon. Parasitology Research 92, 232241.CrossRefGoogle ScholarPubMed
Meaney, M., Haughey, S., Brennan, G. P. and Fairweather, I. (2005 a). A scanning electron microscope study on the route of entry of clorsulon into the liver fluke, Fasciola hepatica. Parasitology Research 95, 117128 and 96, 189–198.Google Scholar
Meaney, M., Haughey, S., Brennan, G. P. and Fairweather, I. (2005 b). Ultrastructural observations on oral ingestion and trans-tegumental uptake of clorsulon by the liver fluke, Fasciola hepatica. Parasitology Research 95, 201212.CrossRefGoogle ScholarPubMed
Meaney, M., Allister, J., McKinstry, B., McLaughlin, K., Brennan, G. P., Forbes, A. B. and Fairweather, I. (2006). Fasciola hepatica: morphological effects of a combination of triclabendazole and clorsulon against mature fluke. Parasitology Research 99, 609621.Google Scholar
Mestorino, N., Formentini, E. A., Lucas, M. F., Fernandez, C., Modamio, P., Hernández, E. M. and Errecalde, J. O. (2008). Pharmacokinetic disposition of triclabendazole in cattle and sheep; discrimination of the order and the rate of the absorption process of its active metabolite triclabendazole sulfoxide. Veterinary Research Comunications 32, 2133.Google Scholar
Mitchell, G. B. (2002). Update on fascioliasis in cattle and sheep. In Practice 4, 7885.Google Scholar
Mohammed Ali, N. A. K., Bogan, J. A., Marriner, S. E. and Richards, R. J. (1986). Pharmacokinetics of triclabendazole alone or in combination with fenbendazole in sheep. Journal of Veterinary Pharmacology and Therapeutics 9, 442445.Google Scholar
Mottier, M. L., Alvarez, L. I., Pis, M. A. and Lanusse, C. E. (2003). Transtegumental diffusion of benzimidazole anthelmintics into Moniezia benedeni: correlation with their octanol-water partition coefficients. Experimental Parasitology 103, 17.CrossRefGoogle ScholarPubMed
Mottier, L., Virkel, G., Solana, H., Alvarez, L., Salles, J. and Lanusse, C. (2004). Triclabendazole biotransformation and comparative diffusion of the parent drug and its oxidized metabolites into Fasciola hepatica. Xenobiotica 34, 10431057.CrossRefGoogle ScholarPubMed
Mottier, L., Alvarez, L., Ceballos, L. and Lanusse, C. (2006 a). Drug transport mechanisms in helminth parasites: passive diffusion of benzimidazole anthelmintics. Experimental Parasitology 113, 4957.Google Scholar
Mottier, L., Alvarez, L., Fairweather, I. and Lanusse, C. (2006 b). Resistance-induced changes in triclabendazole transport in Fasciola hepatica: ivermectin reversal effect. Journal of Parasitology 92, 13551360.CrossRefGoogle ScholarPubMed
Pritchard, G. C., Forbes, A. C., Williams, D. J. L., Salimi-Bejestani, M. R. and Daniel, R. G. (2005). Emergence of fasciolosis in cattle in East Anglia. Veterinary Record 157, 578582.CrossRefGoogle ScholarPubMed
Robinson, M. W., Trudgett, A., Hoey, E. M. and Fairweather, I. (2002). Triclabendazole-resistant Fasciola hepatica: β-tubulin and response to in vitro treatment with triclabendazole. Parasitology 124, 325338.CrossRefGoogle ScholarPubMed
Robinson, M. R., Lawson, J., Trudgett, A., Hoey, E. M. and Fairweather, I. (2004). The comparative metabolism of triclabendazole sulphoxide by triclabendazole-susceptible and triclabendazole-resistant Fasciola hepatica. Parasitology Research 92, 205210.CrossRefGoogle ScholarPubMed
Rothwell, J. and Sangster, N. (1997). Haemonchus contortus: the uptake and metabolism of closantel. International Journal for Parasitology 27, 313319.CrossRefGoogle ScholarPubMed
Schulman, M. D., Valentino, D., Cifelli, S., Lang, R. and Ostlind, D. A. (1979). A pharmacokinetic basis for the efficacy of 4-amino-6-trichloroethenyl-1,3-benzenedisulfonamide against Fasciola hepatica in the rat. Journal of Parasitology 65, 555561.CrossRefGoogle Scholar
Sims, S. M., Ho, N. F. H., Geary, T. G., Thomas, E. M., Day, J. S., Barsuhn, C. L. and Thompson, D. P. (1996). Influence of organic acid excretion on cuticle pH and drug absorption by Haemonchus contortus. International Journal for Parasitology 26, 2535.Google Scholar
Smeal, M. G. and Hall, C. A. (1983). The activity of triclabendazole against immature and adult Fasciola hepatica infections in sheep. Australian Veterinary Journal 60, 329331.CrossRefGoogle ScholarPubMed
Stitt, A. W. and Fairweather, I. (1993). Fasciola hepatica: tegumental surface changes in adult and juvenile flukes following treatment in vitro with the sulphoxide metabolite of triclabendazole (Fasinex). Parasitology Research 79, 529536.Google Scholar
Thompson, D. P. and Geary, T. G. (1995). The structure and function of helminth surfaces. In Biochemistry and Molecular Biology of Parasites (ed. Marr, J. and Muller, M.), pp. 203232. Academic Press, London, UK.Google Scholar
Threadgold, L. T. (1978). Fasciola hepatica: a transmission and scanning electron microscopical study of the apical surface of the gastrointestinal cells. Parasitology 76, 8590.CrossRefGoogle Scholar
Verhoeven, H., Willemsens, G. and Van den Bossche, H. (1980). Uptake and distribution of levamisole in Ascaris suum. In The Host-Invader Interplay (ed. Van den Bossche, H.), pp. 573579. Elsevier/North Holland Biomedical Press, Amsterdam, The Netherlands.Google Scholar
Virkel, G., Lifschitz, A., Sallovitz, J., Pis, A. and Lanusse, C. (2006). Assessment of the main metabolism pathways for the flukicidal compound triclabendazole in sheep. Journal of Veterinary Pharmacology and Therapeutics 29, 213223.Google Scholar