Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T00:11:39.492Z Has data issue: false hasContentIssue false

Rates of microfilarial production by Onchocerca volvulus are not cumulatively reduced by multiple ivermectin treatments

Published online by Cambridge University Press:  03 October 2008

CHRISTIAN BOTTOMLEY
Affiliation:
Department of Primary Care & Population Sciences, Royal Free Hospital, Rowland Hill Street, London NW3 2PF
VALERIE ISHAM
Affiliation:
Department of Statistical Science, University College London, Gower Street, London WC1E 6BT
RICHARD C. COLLINS
Affiliation:
P.O. Box 715, Sonoita, AZ 85637, USA
MARIA-GLORIA BASÁÑEZ*
Affiliation:
Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG
*
*Corresponding Author: Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG. Tel: +44 (0)20 7594 3295. E-mail: [email protected]

Summary

Regular distribution of ivermectin reduces onchocerciasis transmission and morbidity by killing, within humans, the microfilarial stage of the parasite (microfilaricidal effect). In addition, ivermectin exerts a so-called embryostatic effect by which microfilarial production by the adult female worm becomes suppressed during a number of weeks after treatment. To assess the overall effect of ivermectin on onchocerciasis transmission and evaluate the likelihood of local elimination of the infection it is important to estimate the magnitude of the anti-fertility effect over the course of a treatment programme. Estimates of the effect of repeated drug treatments on the production of microfilariae by adult Onchocerca volvulus were obtained by developing a model that was fitted to data collected from three hyperendemic communities in Guatemala, where eligible residents received ivermectin twice per year for two and a half years. The data consist of microfilarial load measurements in the skin, collected just before each six-monthly treatment during the programme. The model that is developed describes the dynamics of an individual host's expected microfilarial load over the 30-month study period. We adopt a Bayesian approach and use Markov chain Monte Carlo (McMC) techniques to fit the model to the data. Combining estimates from the three villages, average microfilarial production in the first six months post-treatment was reduced by ~64% of its pre-treatment level, regardless of values chosen for the pre-ivermectin fertility rate within plausible ranges. Increased adult worm death rate after treatment (to mimic removal of macrofilariae via nodulectomy during the programme) resulted in a smaller estimated magnitude of the embryostatic effect (rate of microfilarial production was reduced by ~58% of pre-ivermectin value). After subsequent treatments, the rate of microfilarial production appeared to be similarly decreased. The data and analyses therefore do not support the hypothesis of a cumulative effect of multiple ivermectin treatments on microfilarial production by female worms.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alley, E. S., Plaisier, A. P., Boatin, B. A., Dadzie, K. Y., Remme, J., Zerbo, G. and Samba, E. M. (1994). The impact of five years of annual ivermectin treatment on skin microfilarial loads in the onchocerciasis focus of Asubende, Ghana. Transactions of the Royal Society of Tropical Medicine and Hygiene 88, 581584.CrossRefGoogle ScholarPubMed
Basáñez, M.-G. and Boussinesq, M. (1999). Population biology of human onchocerciasis. Philosophical Transactions of the Royal Society of London B 354, 809826.CrossRefGoogle ScholarPubMed
Basáñez, M.-G., Collins, R. C., Porter, C. H., Little, M. P. and Brandling-Bennett, D. (2002). Transmission intensity and the patterns of Onchocerca volvulus infection in human communities. American Journal of Tropical Medicine and Hygiene 67, 669679.CrossRefGoogle ScholarPubMed
Basáñez, M.-G., Pion, S. D. S., Boakes, E., Filipe, J. A. N., Churcher, T. S. and Boussinesq, M. (2008). Effect of single-dose ivermectin on Onchocerca volvulus: a systematic review and meta-analysis. Lancet Infectious Diseases 8, 310322.CrossRefGoogle ScholarPubMed
Basáñez, M.-G., Pion, S. D. S., Churcher, T. S., Breitling, L. P., Little, M. P. and Boussinesq, M. (2006). River blindness: a success story under threat? PLoS Medicine 3, e371.CrossRefGoogle ScholarPubMed
Basáñez, M.-G., Razali, K., Renz, A. and Kelly, D. (2007). Density-dependent host choice by disease vectors: epidemiological implications of the ideal free distribution. Transactions of the Royal Society of Tropical Medicine and Hygiene 101, 256269.CrossRefGoogle ScholarPubMed
Basáñez, M.-G., Remme, J. H., Alley, E. S., Bain, O., Shelley, A. J., Medley, G. F. and Anderson, R. M. (1995). Density-dependent processes in the transmission of human onchocerciasis: relationship between the numbers of microfilariae ingested and successful larval development in the simuliid vector. Parasitology 110, 409427.CrossRefGoogle ScholarPubMed
Basáñez, M.-G., Townson, H., Williams, J. R., Frontado, H., Villamizar, N. J. and Anderson, R. M. (1996). Density-dependent processes in the transmission of human onchocerciasis: relationship between microfilarial intake and mortality of the simuliid vector. Parasitology 113, 331355.CrossRefGoogle ScholarPubMed
Bourguinat, C., Ardelli, B. F., Pion, S. D. S., Kamgno, J., Gardon, J., Duke, B. O. L., Boussinesq, M. and Prichard, R. K. (2008). P-glycoprotein-like protein, a possible genetic marker for ivermectin resistance selection in Onchocerca volvulus. Molecular and Biochemical Parasitology 158, 101111.CrossRefGoogle ScholarPubMed
Bourguinat, C., Pion, S. D. S., Kamgno, J., Gardon, J., Duke, B. O. L., Boussinesq, M. and Prichard, R. K. (2007). Genetic selection of low fertile Onchocerca volvulus by ivermectin treatment. PLoS Neglected Tropical Diseases 1, e72.CrossRefGoogle ScholarPubMed
Brandling-Bennett, A. D., Anderson, J., Fuglsang, H. and Collins, R. (1981). Onchocerciasis in Guatemala. Epidemiology in fincas with various in tensities of infection. American Journal of Tropical Medicine and Hygiene 30, 970981.CrossRefGoogle Scholar
Collins, R. C. (1979). Onchocerciasis transmission potentials of four species of Guatemalan simuliidae. American Journal of Tropical Medicine and Hygiene 28, 7275.CrossRefGoogle ScholarPubMed
Collins, R. C., Campbell, C. C., Wilton, D. P. and Newton, L. (1977). Quantitative aspects of the infection of Simulium ochraceum by Onchocerca volvulus. Tropenmedizin und Parasitologie 28, 235243.Google ScholarPubMed
Collins, R. C., Gonzales-Peralta, C., Castro, J., Zea-Flores, G., Cupp, M. S., Richards, F. O. J. and Cupp, E. W. (1992). Ivermectin: reduction in prevalence and infection intensity of Onchocerca volvulus following biannual treatments in five Guatemalan communities. American Journal of Tropical Medicine and Hygiene 47, 156169.CrossRefGoogle ScholarPubMed
Cupp, E. W. and Cupp, M. S. (2005). Impact of ivermectin community level treatments on elimination of adult Onchocerca volvulus when individuals receive multiple treatments per year. American Journal of Tropical Medicine and Hygiene 73, 11591161.CrossRefGoogle ScholarPubMed
Cupp, E. W., Duke, B. O. L., Mackenzie, C. D., Guzmán, J. R., Vieira, J. C., Mendez-Galván, J., Castro, J., Richards, F., Sauerbrey, M., Dominguez, A., Eversole, R. R. and Cupp, M. S. (2004). The effects of long-term community level treatment with ivermectin (Mectizan) on adult Onchocerca volvulus in Latin America. American Journal of Tropical Medicine and Hygiene 71, 602607.CrossRefGoogle ScholarPubMed
Cupp, E. W., Ochoa, J. O., Collins, R. C., Cupp, M. S., Gonzales-Peralta, C., Castro, J. and Zea-Flores, G. (1992). The effects of repetitive community-wide ivermectin treatment on transmission of Onchocerca volvulus in Guatemala. American Journal of Tropical Medicine and Hygiene 47, 170180.CrossRefGoogle ScholarPubMed
Diallo, S., Aziz, M. A., Larivière, M., Diallo, J. S., Diop-Mar, I., N'Dir, O., Badiane, S., Py, D., Schulz-Key, H. and Gaxotte, P. (1986). A double-blind comparison of the efficacy and safety of ivermectin and diethylcarbamazine in a placebo controlled study of Senegalese patients with onchocerciasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 927934.CrossRefGoogle Scholar
Duerr, H. P., Dietz, K., Buttner, D. W. and Schulz-Key, H. (2001). A stochastic model for the aggregation of Onchocerca volvulus in nodules. Parasitology 123, 193201.CrossRefGoogle ScholarPubMed
Duerr, H. P., Dietz, K. and Eichner, M. (2005). Determinants of the eradicability of filarial infections: a conceptual approach. Trends in Parasitology 21, 8896.CrossRefGoogle ScholarPubMed
Duerr, H. P., Dietz, K., Schulz-Key, H., Büttner, D. W. and Eichner, M. (2003). Density-dependent parasite establishment suggests infection-associated immunosuppression as an important mechanism for parasite density regulation in onchocerciasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 97, 242250.CrossRefGoogle ScholarPubMed
Duke, B. O. L. (1980). Observations on Onchocerca volvulus in experimentally infected chimpanzees. Tropenmedizin und Parasitologie 31, 4154.Google ScholarPubMed
Duke, B. O. L. (1993). The population dynamics of Onchocerca volvulus in the human host. Tropical Medicine and Parasitology 44, 6168.Google ScholarPubMed
Duke, B. O. L., Zea-Flores, G. and Muñoz, B. (1991). The embryogenesis of Onchocerca volvulus over the first year after a single dose of ivermectin. Tropical Medicine and Parasitology 42, 175180.Google ScholarPubMed
Engelbrecht, F. and Schulz-Key, H. (1984). Observations on adult Onchocerca volvulus maintained in vitro. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 212215.CrossRefGoogle ScholarPubMed
Gardon, J., Boussinesq, M., Kamgno, J., Gardon-Wendel, N., Demanga-Ngangue, and Duke, B. O. L. (2002). Effects of standard and high doses of ivermectin on adult worms of Onchocerca volvulus: a randomised controlled trial. Lancet 360, 203210.CrossRefGoogle ScholarPubMed
Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis, 2nd Edn. Chapman and Hall/CRC, Boca Raton.Google Scholar
Gilks, W. R., Best, N. G. and Tan, K. K. C. (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. Applied Statistics 44, 455472.CrossRefGoogle Scholar
Grenfell, B. T., Das, P. K., Rajagopalan, P. K. and Bundy, D. A. P. (1990). Frequency distribution of lymphatic filariasis microfilariae in human populations: population processes and statistical estimation. Parasitology 101, 417427.CrossRefGoogle ScholarPubMed
Haefner, J. W. (1996). Modeling Biological Systems. Principles and Applications. Chapman and Hall, New York.CrossRefGoogle Scholar
Huang, G.-H. (2005). Model Identifiability. In Encyclopedia of Statistics in Behavioral Science Volume 3 (ed. Everitt, B. S. and Howell, D. C.), pp. 12491251. John Wiley & Sons, Chichester.Google Scholar
Kershaw, W. E., Duke, B. O. L. and Budden, F. H. (1954). Distribution of microfilariae of O. volvulus in the skin; its relation to the skin changes and to eye lesions and blindness. British Medical Journal 2, 724729.CrossRefGoogle Scholar
Kläger, S., Whitworth, J. A., Post, R. J., Chavasse, D. C. and Downham, M. D. (1993). How long do the effects of ivermectin on adult Onchocerca volvulus persist? Tropical Medicine and Parasitology 44, 305310.Google Scholar
Little, M. P., Breitling, L. P., Basáñez, M.-G., Alley, E. S. and Boatin, B. A. (2004). Association between microfilarial load and excess mortality in onchocerciasis: an epidemiological study. Lancet 363, 15141521.CrossRefGoogle ScholarPubMed
Meredith, S. E. O. and Dull, H. B. (1998). Onchocerciasis: the first decade of Mectizantrade mark treatment. Parasitology Today 14, 472474.CrossRefGoogle ScholarPubMed
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics 21, 10871092.CrossRefGoogle Scholar
Molyneux, D. H. and Davies, J. B. (1997). Onchocerciasis control: moving towards the millennium. Parasitology Today 13, 418425.CrossRefGoogle ScholarPubMed
Osei-Atweneboana, M. Y., Eng, J. K., Boakye, D. A., Gyapong, J. O. and Prichard, R. K. (2007). Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet 369, 20212029.CrossRefGoogle Scholar
Pion, S. D. S., Filipe, J. A. N., Kamgno, J., Gardon, J., Basáñez, M.-G. and Boussinesq, M. (2006). Microfilarial distribution of Loa loa in the human host: population dynamics and epidemiological implications. Parasitology 133, 101109.CrossRefGoogle ScholarPubMed
Plaisier, A. P., Alley, E. S., Boatin, B. A., Van Oortmarssen, G. J., Remme, H., De Vlas, S. J., Bonneux, L. and Habbema, J. D. (1995). Irreversible effects of ivermectin on adult parasites in onchocerciasis patients in the Onchocerciasis Control Programme in West Africa. Journal of Infectious Diseases 172, 204210.CrossRefGoogle ScholarPubMed
Plaisier, A. P., van Oortmarssen, G. J., Remme, J. and Habbema, J. D. (1991). The reproductive lifespan of Onchocerca volvulus in West African savanna. Acta Tropica 48, 271284.CrossRefGoogle ScholarPubMed
Richards, F. O., Boatin, B., Sauerbrey, M. and Sékétéli, A. (2001). Control of onchocerciasis today: status and challenges. Trends in Parasitology 17, 558563.CrossRefGoogle Scholar
Schulz-Key, H. and Karam, M. (1986). Periodic reproduction of Onchocerca volvulus. Parasitology Today 2, 284286.CrossRefGoogle ScholarPubMed
Winnen, M., Plaisier, A. P., Alley, E. S., Nagelkerke, N. J., van Oortmarssen, G., Boatin, B. A. and Habbema, J. D. (2002). Can ivermectin mass treatments eliminate onchocerciasis in Africa? Bulletin of the World Health Organization 80, 384391.Google ScholarPubMed