Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T15:03:58.177Z Has data issue: false hasContentIssue false

Rapid identification of Giardia duodenalis assemblages in NSW using terminal-restriction fragment length polymorphism

Published online by Cambridge University Press:  15 March 2012

A. J. ASHER*
Affiliation:
Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
L. S. WALDRON
Affiliation:
Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
M. L. POWER
Affiliation:
Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
*
*Corresponding author: Tel: +612 9850 9259. Fax: +612 9850 8245. E-mail: [email protected]

Summary

Humans are infected by 2 genetic assemblages (A and B) of Giardia duodenalis, a protozoan parasite that causes gastro-intestinal disease. Sub-assemblages AI, AII, BIII and BIV are commonly identified in human cases. Detection requires amplification of G. duodenalis loci. Subsequent DNA sequencing or restriction fragment length polymorphism (RFLP) identifies sub-assemblages but is expensive (DNA sequencing) or insensitive (RFLP). This study investigated a fluorescence-based detection method, using terminal-restriction fragment length polymorphism (T-RFLP) of the glutamate dehydrogenase gene to characterize human infections. Clinical samples (n=73), positive for Giardia were collected in New South Wales, Australia, and were used to evaluate T-RFLP detection. The accuracy and sensitivity of T-RFLP detection was established by comparison to DNA sequencing and RFLP. Sub-assemblage assignment by T-RFLP identified BIV as the common subtype in N.S.W cases, whilst AI, AII and BIII were also detected. When compared to DNA sequencing and RFLP, analysis by T-RFLP was a reliable and reproducible method. Automated fluorescent detection enabled accurate sizing of restriction fragments and provided a sensitive alternative to RFLP. Discrimination of sub-assemblages by T-RFLP was comparable to DNA sequencing, but was efficient and inexpensive. The protocol described here provides a rapid and sensitive diagnostic tool for routine sample screenings in epidemiological research.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asher, A. J., Waldron, L. S. and Power, M. L. (2012). Evaluation of a PCR protocol for sensitive detection of Giardia intestinalis in human faeces. Parasitology Research 110, 853858. doi: 10.1007/s00436-011-2565-3.Google Scholar
Caccio, S. M. and Ryan, U. (2008). Molecular epidemiology of giardiasis. Molecular and Biochemical Parasitology 160, 7580. doi: 10.1016/j.molbiopara.2008.04.006.Google Scholar
Caccio, S. M. and Sprong, H. (2010). Giardia duodenalis: genetic recombination and its implications for taxonomy and molecular epidemiology. Experimental Parasitology 124, 107112. doi: 10.1016/j.exppara.2009.02.007.Google Scholar
Hopkins, R. M., Meloni, B. P., Groth, D. M., Wetherall, J. D., Reynoldson, J. A. and Thompson, R. C. A. (1997). Ribosomal RNA sequencing reveals differences between the genotypes of Giardia isolates recovered from humans and dogs living in the same locality. Journal of Parasitology 83, 4451.CrossRefGoogle ScholarPubMed
Lane, S. and Lloyd, D. (2002). Current trends in research into the waterborne parasite Giardia. Critical Reviews in Microbiology 28, 123147.Google Scholar
Lebbad, M., Ankarklev, J., Tellez, A., Leiva, B., Andersson, J. O. and Svard, S. (2008). Dominance of Giardia assemblage B in Leon, Nicaragua. Acta Tropica 106, 4453. doi: 10.1016/j.actatropica.2008.01.004.CrossRefGoogle ScholarPubMed
Marsh, T. (1999). Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterising diversity among homologous populations of amplification products. Current Opinion in Microbiology 2, 323327.Google Scholar
Monis, P. T., Andrews, R. H., Mayrhofer, G. and Ey, P. L. (1999). Molecular systematics of the parasitic protozoan Giardia intestinalis. Molecular Biology and Evolution 16, 11351144.Google Scholar
Monis, P. T., Andrews, R. H., Mayrhofer, G., Mackrill, J., Kulda, J., Isaac-Renton, J. L. and Ey, P. L. (1998). Novel lineages of Giardia intestinalis identified by genetic analysis of organisms isolated from dogs in Australia. Parasitology 116, 719.Google Scholar
Monis, P. T., Mayrhofer, G., Andrews, R. H., Homan, W. L., Limper, L. and Ey, P. L. (1996). Molecular genetic analysis of Giardia intestinalis isolates at the glutamate dehydrogenase locus. Parasitology 112, 112.Google Scholar
Monis, P. T. and Thompson, R. C. A. (2003). Cryptosporidium and Giardia-zoonoses: fact or fiction? Infection, Genetics and Evolution 3, 233244. doi: 10.1016/j.meegid.2003.08.003.CrossRefGoogle ScholarPubMed
Nachamkin, I., Panara, N. J., Li, M., Ung, H., Yuen, P. K., Kricka, L. J. and Wilding, P. (2001). Agilent 2100 bioanalyzer for restriction fragment length polymorphism analysis of the Campylobacter jejuni flagellin gene. Journal of Clinical Microbiology 39, 754757. doi: 10.1128/JCM.39.2.754-757.2001.CrossRefGoogle ScholarPubMed
Nesselquist, E. L., Welch, D. M. and Sogin, M. L. (2010). The identification of a new Giardia duodenalis assemblage in marine vertebrates and a preliminary analysis of G. duodenalis population biology in marine systems. International Journal for Parasitology 40, 10631074. doi: 10.1016/j.ijpara.2010.02.015.Google Scholar
Read, C. M., Monis, P. T. and Thompson, R. C. A. (2004). Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infection, Genetics and Evolution 4, 125130. doi: 10.1016/j.meegid.2004.02.001.CrossRefGoogle ScholarPubMed
Read, C., Walters, J., Robertson, I. D. and Thompson, R. C. (2002). Correlation between genotype of Giardia duodenalis and diarrhoea. International Journal for Parasitology 32, 229231.Google Scholar
Roxstrom-Lindquist, K., Palm, D., Reiner, D., Ringqvist, E. and Svard, S. G. (2006). Giardia immunity – an update. Trends in Parasitology 22, 2631. doi: 10.1016/j.pt.2005.11.005.Google Scholar
Savioli, L., Smith, H. and Thompson, A. (2006). Giardia and Cryptosporidium join the ‘Neglected Diseases Initiative.’ Trends in Parasitology 22, 203208. doi: 10.1016/j.pt.2006.02.015.CrossRefGoogle ScholarPubMed
Schutte, U. M. E., Abdo, Z., Bent, S. J., Shyu, C., Williams, C. J., Pierson, J. D. and Forney, L. J. (2008). Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Applied Microbiology and Biotechnology 80, 365380. doi:10.1007/s00253-008-1565-4.CrossRefGoogle ScholarPubMed
Smith, H. V., Caccio, S. M., Tait, A., McLauchlin, J. and Thompson, R. C. (2006). Tools for investigating the environmental transmission of Cryptosporidium and Giardia infections in humans. Trends in Parasitology 22, 160167. doi: 10.1016/j.pt.2006.02.009.Google Scholar
Sulaiman, I. M., Fayer, R., Bern, C., Gilman, R. H., Trout, J. M., Schantz, P. M., Das, P., Lal, A. A. and Xiao, L. (2003). Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerging Infectious Diseases 9, 14441452.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 10, 27312739.Google Scholar
Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, population-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680. doi:10.1093/nar/22.22.4673.Google Scholar
Thompson, R. C. A., Hopkins, R. M. and Homan, W. L. (2000). Nomenclature and genetic groupings of Giardia infecting mammals. Parasitology Today 16, 210213.CrossRefGoogle ScholarPubMed
Traub, R. J., Monis, P. T. and Robertson, I. D. (2005). Molecular epidemiology: a multidisciplinary approach to understanding parasitic zoonoses. International Journal for Parasitology 35, 12951307. doi: 10.1016/j.ijpara.2005.06.008.CrossRefGoogle ScholarPubMed
Upcroft, J. A., Boreham, P. F. L., Campbell, R. W., Shepherd, R. W. and Upcroft, P. (1995). Biological and genetic analysis of a longitudinal collection of Giardia samples derived from humans. Acta Tropica 60, 3546.CrossRefGoogle ScholarPubMed
Waldron, L. S., Ferrari, B. C., Gillings, M. R., and Power, M. L. (2009). Terminal restriction fragment length polymorphism for identi fication of Cryptosporidium species in human feces. Applied and Environmental Microbiology 75, 108111. doi:10.1128/AEM.01341-08.CrossRefGoogle Scholar
Waldron, L. S. and Power, M. L. (2011). Fluorescence analysis detects gp60 subtype diversity in Cryptosporidium infections. Infection, Genetics and Evolution 11, 13881395. doi:10.1016/j.meegid.2011.05.008.Google Scholar
Yang, R., Lee, J., Ng, J. and Ryan, U. (2010). High prevalence Giardia duodenalis assemblage B and potentially zoonotic subtypes in sporadic human cases in Western Australia. International Journal for Parasitology 40, 293297. doi: 10.1016/j.ijpara.2009.08.003.Google Scholar