Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T00:06:19.490Z Has data issue: false hasContentIssue false

Proteolytic activity in Tritrichomonas mobilensis

Published online by Cambridge University Press:  06 April 2009

P. Bózner
Affiliation:
Department of Microbiology and Immunology and Czechoslovakia
P. Demeš
Affiliation:
Institute of Immunology, Comenius University, Sasinkova 4, 811 08 Bratislava, Czechoslovakia
J. Štefanovič
Affiliation:
Department of Microbiology and Immunology and Czechoslovakia

Summary

Cell extracts of an entero-invasive protozoon of squirrel monkeys, Tritrichomonas mobilensis, contained relatively high proteolytic activity, measured on hide powder azure (HPA). Multiple proteinase forms, optimally active at pH 5–7, were detected by electrophoretic analysis in gelatin-containing polyacrylamide gels. Three major proteinase bands of apparent low molecular weights, Mr 18, 23 and 30 kDa, were seen on gels. Inhibition-activation studies suggest that only cysteine proteinases were involved in HPAase and gelatinolytic activities of T. mobilensis cell extracts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arroyo, R. & Alderete, J. F. (1989). Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infection and Immunity 57, 2991–7.CrossRefGoogle ScholarPubMed
Culberson, D. E., Pindak, F. F., Gardner, W. A. & Honigberg, B. M. (1986). Tritrichomonas mobilensis n. sp. (Zoomastigophorea: Trichomonadida) from the Bolivian Squirrel Monkey Saimiri boliviensis boliviensis. Journal of Protozoology 33, 301–4.CrossRefGoogle Scholar
Culberson, D. E., Scimeca, J. M., Gardner, W. A. & Abee, C. R. (1988). Pathogenicity of Tritrichomonas mobilensis: subcutaneous inoculation in mice. Journal of Parasitology 74, 774–80.CrossRefGoogle ScholarPubMed
Demeš, P., Pindak, F. F., Wells, D. J. & Gardner, W. A. (1989). Adherence and surface properties of Tritrichomonas mobilensis, an intestinal parasite of the squirrel monkey. Parasitology Research 75, 589–94.CrossRefGoogle ScholarPubMed
Diamond, L. S. (1957). The establishment of various trichomonads of animals and man in axenic cultures. Journal of Parasitology 43, 488–90.CrossRefGoogle ScholarPubMed
Keene, W. E., Petitt, M. G., Allen, S. & Mckerrow, J. H. (1986). The major neutral proteinase of Entamoeba histolytica. Journal of Experimental Medicine 163, 536–49.CrossRefGoogle ScholarPubMed
Lockwood, B. C., North, M. J. & Coombs, G. H. (1984). Trichomonas vaginalis, Tritrichomonas foetus and Trichomitus batrachorum: comparative proteolytic activity. Experimental Parasitology 58, 245–53.CrossRefGoogle ScholarPubMed
Lockwood, B. C., North, M. J. & Coombs, G. H. (1988). The release of hydrolases from Trichomonas vaginalis and Tritrichomonas foetus. Molecular and Biochemical Parasitology 30, 135–2.CrossRefGoogle ScholarPubMed
Lockwood, B. C., North, M. J., Scott, K. I., Bremner, A. F. & Coombs, C. H. (1987). The use of a highly sensitive electrophoretic method to compare the proteinases of trichomonads. Molecular and Biochemical Parasitology 24, 8995.CrossRefGoogle ScholarPubMed
Luaces, A. L. & Barrett, A. J. (1988). Affinity purification and biochemical characterization of histolysin, the major cysteine proteinase of Entamoeba histolytica. The Biochemical Journal 250, 903–9.CrossRefGoogle ScholarPubMed
Lushbaugh, W. B., Hofbauer, A. F., Kairalla, A. A., Cantey, J. R. & Pittman, F. E. (1984). Relationship of cytotoxins of axenically cultivated Entamoeba histolytica to virulence. Gastroenterology 86, 1488–95.CrossRefGoogle ScholarPubMed
McLaughlin, J. & Müller, M. (1979). Purification and characterization of a low molecular weight thiol proteinase from the flagellate protozoon Tritrichomonas foetus. Journal of Biological Chemistry 254, 1526–33.CrossRefGoogle ScholarPubMed
North, M. J. & Whyte, A. (1984). Purification and characterization of two acid proteinases from Dictyostelium discoideum. Journal of General Microbiology 130, 123–34.Google Scholar
Pindak, F. F., Pindak, M. M., Abee, C. R. & Gardner, W. A. (1985). Detection and cultivation of intestinal trichomonads of squirrel monkeys (Saimiri sciureus). American Journal of Primatology 9, 197205.CrossRefGoogle ScholarPubMed
Rinderknecht, H., Geokas, M. C., Silverman, P. & Haverback, B. J. (1968). A new ultrasensitive method for the determination of proteolytic activity. Clinica Chimica Acta 21, 197203.CrossRefGoogle ScholarPubMed
Scimeca, J. M., Culberson, D. E., Abee, C. R. & Gardner, W. A. (1989). Intestinal trichomonads Tritrichomonas mobilensis in the natural host Saimiri sciureus and Saimiri boliviensis. Veterinary Pathology 26, 144–7.CrossRefGoogle ScholarPubMed
Sedmak, J. J. & Grossberg, S. E. (1977). A rapid, sensitive and versatile assay for protein using Coomassie brilliant blue G 250. Analytical Biochemistry 79, 544–52.CrossRefGoogle Scholar