Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T11:02:39.115Z Has data issue: false hasContentIssue false

Protein transport and trafficking in Plasmodium falciparum-infected erythrocytes

Published online by Cambridge University Press:  08 November 2004

J. M. PRZYBORSKI
Affiliation:
Hygiene Institute, Department of Parasitology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
M. LANZER
Affiliation:
Hygiene Institute, Department of Parasitology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany

Abstract

The human malarial parasite Plasmodium falciparum extensively modifies its host erythrocyte, and to this end, is faced with an interesting challenge. It must not only sort proteins to common organelles such as endoplasmic reticulum, Golgi and mitochondria, but also target proteins across the ‘extracellular’ cytosol of its host cell. Furthermore, as a member of the phylum Apicomplexa, the parasite has to sort proteins to novel organelles such as the apicoplast, micronemes and rhoptries. In order to overcome these difficulties, the parasite has created a novel secretory system, which has been characterized in ever-increasing detail in the past decade. Along with the ‘hardware’ for a secretory system, the parasite also needs to ‘program’ proteins to enable high fidelity sorting to their correct subcellular location. The nature of these sorting signals has remained until relatively recently, enigmatic. Experimental work has now begun to dissect the sorting signals responsible for correct subcellular targeting of parasite-encoded proteins. In this review we summarize the current understanding of such signals, and comment on their role in protein sorting in this organism, which may become a model for the study of novel protein trafficking mechanisms.

Type
Review Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ADISA, A., ALBANO, F. R., REEDER, J., FOLEY, M. & TILLEY, L. ( 2001). Evidence for a role for a Plasmodium falciparum homologue of Sec31p in the export of proteins to the surface of malaria parasite-infected erythrocytes. Journal of Cell Science 114, 33773386.Google Scholar
ADISA, A., RUG, M., KLONIS, N., FOLEY, M., COWMAN, A. F. & TILLEY, L. ( 2003). The signal sequence of exported protein-1 directs the green fluorescent protein to the parasitophorous vacuole of transfected malaria parasites. Journal of Biological Chemistry 278, 65326542.CrossRefGoogle Scholar
AIKAWA, M., MILLER, L. H., JOHNSON, J. & RABBEGE, J. ( 1978). Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. Journal of Cell Biology 77, 7282.Google Scholar
ALBANO, F. R., BERMAN, A., LA GRECA, N., HIBBS, A. R., WICKHAM, M., FOLEY, M. & TILLEY, L. ( 1999). A homologue of Sar1p localises to a novel trafficking pathway in malaria-infected erythrocytes. European Journal of Cell Biology 78, 453462.CrossRefGoogle Scholar
ALBANO, F. R., FOLEY, M. & TILLEY, L. ( 1999). Export of parasite proteins to the erythrocyte cytoplasm: secretory machinery and traffic signals. Novartis Foundation Symposium 226, 157172; discussion 173–155.Google Scholar
ANIENTO, F., GU, F., PARTON, R. G. & GRUENBERG, J. ( 1996). An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. Journal of Cell Biology 133, 2941.CrossRefGoogle Scholar
ANSORGE, I., BENTING, J., BHAKDI, S. & LINGELBACH, K. ( 1996). Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. Biochemical Journal 315, 307314.CrossRefGoogle Scholar
BALDI, D. L., ANDREWS, K. T., WALLER, R. F., ROOS, D. S., HOWARD, R. F., CRABB, B. S. & COWMAN, A. F. ( 2000). RAP1 controls rhoptry targeting of RAP2 in the malaria parasite Plasmodium falciparum. The EMBO Journal 19, 24352443.CrossRefGoogle Scholar
BANUMATHY, G., SINGH, V. & TATU, U. ( 2002). Host chaperones are recruited in membrane-bound complexes by Plasmodium falciparum. Journal of Biological Chemistry 277, 39023912.CrossRefGoogle Scholar
BARUCH, D. I., PASLOSKE, B. L., SINGH, H. B., BI, X., MA, X. C., FELDMAN, M., TARASCHI, T. F. & HOWARD, R. J. ( 1995). Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 7787.Google Scholar
BEHARI, R. & HALDAR, K. ( 1994). Plasmodium falciparum: protein localization along a novel, lipid-rich tubovesicular membrane network in infected erythrocytes. Experimental Parasitology 79, 250259.CrossRefGoogle Scholar
BENDER, A., VAN DOOREN, G. G., RALPH, S. A., McFADDEN, G. I. & SCHNEIDER, G. ( 2003). Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Molecular and Biochemical Parasitology 132, 5966.CrossRefGoogle Scholar
BENNETT, B. J., THOMPSON, J. & COPPEL, R. L. ( 1995). Identification of Plasmodium falciparum histone 2B and histone 3 genes. Molecular and Biochemical Parasitology 70, 231233.CrossRefGoogle Scholar
BIAGINI, G. A., BRAY, P. G., SPILLER, D. G., WHITE, M. R. & WARD, S. A. ( 2003). The digestive food vacuole of the malaria parasite is a dynamic intracellular Ca2+ store. Journal of Biological Chemistry 278, 2791027915.CrossRefGoogle Scholar
BIRAGO, C., ALBANESI, V., SILVESTRINI, F., PICCI, L., PIZZI, E., ALANO, P., PACE, T. & PONZI, M. ( 2003). A gene-family encoding small exported proteins is conserved across Plasmodium genus. Molecular and Biochemical Parasitology 126, 209218.CrossRefGoogle Scholar
BLACKMAN, M. J. & BANNISTER, L. H. ( 2001). Apical organelles of Apicomplexa: biology and isolation by subcellular fractionation. Molecular and Biochemical Parasitology 117, 1125.CrossRefGoogle Scholar
BLISNICK, T., MORALES BETOULLE, M. E., BARALE, J. C., UZUREAU, P., BERRY, L., DESROSES, S., FUJIOKA, H., MATTEI, D. & BRAUN BRETON, C. ( 2000). Pfsbp1, a Maurer's cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Molecular and Biochemical Parasitology 111, 107121.CrossRefGoogle Scholar
BLOBEL, G. & DOBBERSTEIN, B. ( 1975 a). Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. Journal of Cell Biology 67, 835851.Google Scholar
BLOBEL, G. & DOBBERSTEIN, B. ( 1975 b). Transfer to proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. Journal of Cell Biology 67, 852862.Google Scholar
BLOBEL, G., WALTER, P., CHANG, C. N., GOLDMAN, B. M., ERICKSON, A. H. & LINGAPPA, V. R. ( 1979). Translocation of proteins across membranes: the signal hypothesis and beyond. Symposium of the Society for Experimental Biology 33, 936.Google Scholar
BOGERD, H. P., BENSON, R. E., TRUANT, R., HEROLD, A., PHINGBODHIPAKKIYA, M. & CULLEN, B. R. ( 1999). Definition of a consensus transportin-specific nucleocytoplasmic transport signal. Journal of Biological Chemistry 274, 97719777.CrossRefGoogle Scholar
BORGHI, S., MOLINARI, S., RAZZINI, G., PARISE, F., BATTINI, R. & FERRARI, S. ( 2001). The nuclear localization domain of the MEF2 family of transcription factors shows member-specific features and mediates the nuclear import of histone deacetylase 4. Journal of Cell Science 114, 44774483.Google Scholar
BOZDECH, Z., DELLING, U., VOLKMAN, S. K., COWMAN, A. F. & SCHURR, E. ( 1996). Cloning and sequence analysis of a novel member of the ATP-binding cassette (ABC) protein gene family from Plasmodium falciparum. Molecular and Biochemical Parasitology 81, 4151.CrossRefGoogle Scholar
BRUCE, B. D. ( 2001). The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. Biochimica et Biophysica Acta 1541, 221.CrossRefGoogle Scholar
BURGHAUS, P. A. & LINGELBACH, K. ( 2001). Luciferase, when fused to an N-terminal signal peptide, is secreted from transfected Plasmodium falciparum and transported to the cytosol of infected erythrocytes. Journal of Biological Chemistry 276, 2683826845.CrossRefGoogle Scholar
CARRUTHERS, V. B. & SIBLEY, L. D. ( 1997). Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. European Journal of Cell Biology 73, 114123.Google Scholar
CEREDE, O., DUBREMETZ, J. F., BOUT, D. & LEBRUN, M. ( 2002). The Toxoplasma gondii protein MIC3 requires pro-peptide cleavage and dimerization to function as adhesin. The EMBO Journal 21, 25262536.CrossRefGoogle Scholar
CHENG, Q., CLOONAN, N., FISCHER, K., THOMPSON, J., WAINE, G., LANZER, M. & SAUL, A. ( 1998). Stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Molecular and Biochemical Parasitology 97, 161176.CrossRefGoogle Scholar
COPPEL, R. L. ( 1992). Repeat structures in a Plasmodium falciparum protein (MESA) that binds human erythrocyte protein 4.1. Molecular and Biochemical Parasitology 50, 335347.CrossRefGoogle Scholar
COUFFIN, S., HERNANDEZ-RIVAS, R., BLISNICK, T. & MATTEI, D. ( 1998). Characterisation of PfSec61, a Plasmodium falciparum homologue of a component of the translocation machinery at the endoplasmic reticulum membrane of eukaryotic cells. Molecular and Biochemical Parasitology 92, 8998.CrossRefGoogle Scholar
CRABB, B. S., COOKE, B. M., REEDER, J. C., WALLER, R. F., CARUANA, S. R., DAVERN, K. M., WICKHAM, M. E., BROWN, G. V., COPPEL, R. L. & COWMAN, A. F. ( 1997). Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89, 287296.CrossRefGoogle Scholar
CRABB, B. S., RUG, M., GILBERGER, T. W., THOMPSON, J. K., TRIGLIA, T., MAIER, A. G. & COWMAN, A. F. ( 2004). Transfection of the Human Malaria Parasite Plasmodium falciparum. Methods in Molecular Biology 270, 263276.CrossRefGoogle Scholar
CRAIG, A. & SCHERF, A. ( 2001). Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Molecular and Biochemical Parasitology 115, 129143.CrossRefGoogle Scholar
CREEDON, K. A., KASLOW, D. C., RATHOD, P. K. & WELLEMS, T. E. ( 1992). Identification of a Plasmodium falciparum histone 2A gene. Molecular and Biochemical Parasitology 54, 113115.CrossRefGoogle Scholar
CULVENOR, J. G., LANGFORD, C. J., CREWTHER, P. E., SAINT, R. B., COPPEL, R. L., KEMP, D. J., ANDERS, R. F. & BROWN, G. V. ( 1987). Plasmodium falciparum: identification and localization of a knob protein antigen expressed by a cDNA clone. Experimental Parasitology 63, 5867.CrossRefGoogle Scholar
DACKS, J. B. & DOOLITTLE, W. F. ( 2001). Reconstructing/deconstructing the earliest eukaryotes: how comparative genomics can help. Cell 107, 419425.CrossRefGoogle Scholar
DANG, C. V. & LEE, W. M. ( 1988). Identification of the human c-myc protein nuclear translocation signal. Molecular and Cellular Biology 8, 40484054.CrossRefGoogle Scholar
DE CASTRO, F. A., WARD, G. E., JAMBOU, R., ATTAL, G., MAYAU, V., JAUREGUIBERRY, G., BRAUN-BRETON, C., CHAKRABARTI, D. & LANGSLEY, G. ( 1996). Identification of a family of Rab G-proteins in Plasmodium falciparum and a detailed characterisation of pfrab6. Molecular and Biochemical Parasitology 80, 7788.CrossRefGoogle Scholar
DEITSCH, K., DRISKILL, C. & WELLEMS, T. ( 2001). Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Research 29, 850853.CrossRefGoogle Scholar
DI CRISTINA, M., SPACCAPELO, R., SOLDATI, D., BISTONI, F. & CRISANTI, A. ( 2000). Two conserved amino acid motifs mediate protein targeting to the micronemes of the apicomplexan parasite Toxoplasma gondii. Molecular and Cellular Biology 20, 73327341.CrossRefGoogle Scholar
DUBREMETZ, J. F. & SCHWARTZMAN, J. D. ( 1993). Subcellular organelles of Toxoplasma gondii and host cell invasion. Research in Immunology 144, 3133.CrossRefGoogle Scholar
ELFORD, B. C., COWAN, G. M. & FERGUSON, D. J. ( 1995). Parasite-regulated membrane transport processes and metabolic control in malaria-infected erythrocytes. The Biochemical Journal 308, 361374.CrossRefGoogle Scholar
ELMENDORF, H. G. & HALDAR, K. ( 1993). Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi. The EMBO Journal 12, 47634773.Google Scholar
ETZION, Z. & PERKINS, M. E. ( 1989). Localization of a parasite encoded protein to erythrocyte cytoplasmic vesicles of Plasmodium falciparum-infected cells. European Journal of Cell Biology 48, 174179.Google Scholar
FAN, Q., AN, L. & CUI, L. ( 2004). Plasmodium falciparum histone acetyltransferase, a yeast GCN5 homologue involved in chromatin remodeling. Eukaryotic Cell 3, 264276.CrossRefGoogle Scholar
FAVALORO, J. M., COPPEL, R. L., CORCORAN, L. M., FOOTE, S. J., BROWN, G. V., ANDERS, R. F. & KEMP, D. J. ( 1986). Structure of the RESA gene of Plasmodium falciparum. Nucleic Acids Research 14, 82658277.CrossRefGoogle Scholar
FIELD, M. C., ALI, B. R. & FIELD, H. ( 1999). GTPases in protozoan parasites: tools for cell biology and chemotherapy. Parasitology Today 15, 365371.CrossRefGoogle Scholar
FOLEY, M. & TILLEY, L. ( 1998 a). Protein trafficking in malaria-infected erythrocytes. International Journal for Parasitology 28, 16711680.Google Scholar
FOLEY, M. & TILLEY, L. ( 1998 b). Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacology and Therapeutics 79, 5587.Google Scholar
FOTH, B. J. & McFADDEN, G. I. ( 2003). The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. International Review of Cytology 224, 57110.CrossRefGoogle Scholar
FOTH, B. J., RALPH, S. A., TONKIN, C. J., STRUCK, N. S., FRAUNHOLZ, M., ROOS, D. S., COWMAN, A. F. & McFADDEN, G. I. ( 2003). Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299, 705708.CrossRefGoogle Scholar
GILBERGER, T. W., THOMPSON, J. K., REED, M. B., GOOD, R. T. & COWMAN, A. F. ( 2003). The cytoplasmic domain of the Plasmodium falciparum ligand EBA-175 is essential for invasion but not protein trafficking. Journal of Cell Biology 162, 317327.CrossRefGoogle Scholar
GILSON, P. R. & McFADDEN, G. I. ( 2002). Jam packed genomes – a preliminary, comparative analysis of nucleomorphs. Genetica 115, 1328.CrossRefGoogle Scholar
GINSBURG, H., FAMIN, O., ZHANG, J. & KRUGLIAK, M. ( 1998). Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochemical Pharmacology 56, 13051313.CrossRefGoogle Scholar
GORLICH, D. & MATTAJ, I. W. ( 1996). Nucleocytoplasmic transport. Science 271, 15131518.CrossRefGoogle Scholar
GU, F., ANIENTO, F., PARTON, R. G. & GRUENBERG, J. ( 1997). Functional dissection of COP-I subunits in the biogenesis of multivesicular endosomes. Journal of Cell Biology 139, 11831195.CrossRefGoogle Scholar
GUNTHER, K., TUMMLER, M., ARNOLD, H. H., RIDLEY, R., GOMAN, M., SCAIFE, J. G. & LINGELBACH, K. ( 1991). An exported protein of Plasmodium falciparum is synthesized as an integral membrane protein. Molecular and Biochemical Parasitology 46, 149157.CrossRefGoogle Scholar
HAGER, K., STRIEPEN, B., TILNEY, L. & ROOS, D. ( 1999). The nuclear envelope serves as an intermediary between the ER and Golgi complex in the intracellular parasite Toxoplasma gondii. Journal of Cell Science 112, 26312638.Google Scholar
HALDAR, K., SAMUEL, B. U., MOHANDAS, N., HARRISON, T. & HILLER, N. L. ( 2001). Transport mechanisms in Plasmodium-infected erythrocytes: lipid rafts and a tubovesicular network. International Journal for Parasitology 31, 13931401.CrossRefGoogle Scholar
HAWTHORNE, P. L., TRENHOLME, K. R., SKINNER-ADAMS, T. S., SPIELMANN, T., FISCHER, K., DIXON, M. W. A., ORTEGA, M. R., ANDERSON, K. L., KEMP, D. J. & GARDINER, D. L. ( 2004). A novel Plasmodium falciparum ring stage protein, REX, is located in Maurer's clefts. Molecular and Biochemical Parasitology 136, 181189.CrossRefGoogle Scholar
HAYASHI, M., TANIGUCHI, S., ISHIZUKA, Y., KIM, H. S., WATAYA, Y., YAMAMOTO, A. & MORIYAMA, Y. ( 2001). A homologue of N-ethylmaleimide-sensitive factor in the malaria parasite Plasmodium falciparum is exported and localized in vesicular structures in the cytoplasm of infected erythrocytes in the brefeldin A-sensitive pathway. Journal of Biological Chemistry 276, 1524915255.CrossRefGoogle Scholar
HEHL, B. & MARTI, M. ( 2004). Secretory protein trafficking in Giardia intestinalis. Molecular Microbiology 53, 1928.CrossRefGoogle Scholar
HIBBS, A. R. & SAUL, A. J. ( 1994). Plasmodium falciparum: highly mobile small vesicles in the malaria-infected red blood cell cytoplasm. Experimental Parasitology 79, 260269.CrossRefGoogle Scholar
HOLT, D. C., GARDINER, D. L., THOMAS, E. A., MAYO, M., BOURKE, P. F., SUTHERLAND, C. J., CARTER, R., MYERS, G., KEMP, D. J. & TRENHOLME, K. R. ( 1999). The cytoadherence linked asexual gene family of Plasmodium falciparum: are there roles other than cytoadherence? International Journal for Parasitology 29, 939944.Google Scholar
HOOGENRAAD, N. J., WARD, L. A. & RYAN, M. T. ( 2002). Import and assembly of proteins into mitochondria of mammalian cells. Biochimica et Biophysica Acta 1592, 97105.CrossRefGoogle Scholar
HOPPE, H. C. & JOINER, K. A. ( 2000). Cytoplasmic tail motifs mediate endoplasmic reticulum localization and export of transmembrane reporters in the protozoan parasite Toxoplasma gondii. Cellular Microbiology 2, 569578.CrossRefGoogle Scholar
HOPPE, H. C., NGO, H. M., YANG, M. & JOINER, K. A. ( 2000). Targeting to rhoptry organelles of Toxoplasma gondii involves evolutionarily conserved mechanisms. Nature Cell Biology 2, 449456.CrossRefGoogle Scholar
HOWARD, R., LYON, J., UNI, S., SAUL, A., ALEY, S., KLOTZ, F., PANTON, L., SHERWOOD, J., MARSH, K. & AIKAWA, M. ( 1987). Transport of an Mr approximately 300,000 Plasmodium falciparum protein (Pf EMP 2) from the intraerythrocytic asexual parasite to the cytoplasmic face of the host cell membrane. Journal of Cell Biology 104, 12691280.CrossRefGoogle Scholar
HOWARD, R. F. & REESE, R. T. ( 1990). Plasmodium falciparum: hetero-oligomeric complexes of rhoptry polypeptides. Experimental Parasitology 71, 330342.CrossRefGoogle Scholar
JACKSON, M. R., NILSSON, T. & PETERSON, P. A. ( 1990). Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. The EMBO Journal 9, 31533162.Google Scholar
JACKSON, M. R., NILSSON, T. & PETERSON, P. A. ( 1993). Retrieval of transmembrane proteins to the endoplasmic reticulum. Journal of Cell Biology 121, 317333.CrossRefGoogle Scholar
JOSHI, M. B., LIN, D. T., CHIANG, P. H., GOLDMAN, N. D., FUJIOKA, H., AIKAWA, M. & SYIN, C. ( 1999). Molecular cloning and nuclear localization of a histone deacetylase homologue in Plasmodium falciparum. Molecular and Biochemical Parasitology 99, 1119.CrossRefGoogle Scholar
KALIES, K. U. & HARTMANN, E. ( 1998). Protein translocation into the endoplasmic reticulum (ER) – two similar routes with different modes. European Journal of Biochemistry 254, 15.CrossRefGoogle Scholar
KAVIRATNE, M., KHAN, S. M., JARRA, W. & PREISER, P. R. ( 2002). Small variant STEVOR antigen is uniquely located within Maurer's clefts in Plasmodium falciparum-infected red blood cells. Eukaryotic Cell 1, 926935.CrossRefGoogle Scholar
KILEJIAN, A. ( 1979). Characterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 76, 46504653.CrossRefGoogle Scholar
KIRCHHAUSEN, T. ( 2000). Three ways to make a vesicle. Nature Reviews Molecular Cell Biology 1, 187198.CrossRefGoogle Scholar
KIRK, K. ( 2004). Channels and transporters as drug targets in the Plasmodium-infected erythrocyte. Acta Tropica 89, 285298.CrossRefGoogle Scholar
KIRK, K., TILLEY, L. & GINSBURG, H. ( 1999). Transport and trafficking in the malaria-infected erythrocyte. Parasitology Today 15, 355357.CrossRefGoogle Scholar
KLEMBA, M., BEATTY, W., GLUZMAN, I. & GOLDBERG, D. E. ( 2004). Trafficking of plasmepsin II to the food vacuole of the malaria parasite Plasmodium falciparum. Journal of Cell Biology 164, 4756.CrossRefGoogle Scholar
KNAPP, B., HUNDT, E. & KUPPER, H. A. ( 1989). A new blood stage antigen of Plasmodium falciparum transported to the erythrocyte surface. Molecular and Biochemical Parasitology 37, 4756.CrossRefGoogle Scholar
KOCKEN, C. H., VAN DER WEL, A. M., DUBBELD, M. A., NARUM, D. L., VAN DE RIJKE, F. M., VAN GEMERT, G. J., VAN DER LINDE, X., BANNISTER, L. H., JANSE, C., WATERS, A. P. & THOMAS, A. W. ( 1998). Precise timing of expression of a Plasmodium falciparum-derived transgene in Plasmodium berghei is a critical determinant of subsequent subcellular localization. Journal of Biological Chemistry 273, 1511915124.CrossRefGoogle Scholar
KOHLER, S., DELWICHE, C. F., DENNY, P. W., TILNEY, L. G., WEBSTER, P., WILSON, R. J., PALMER, J. D. & ROOS, D. S. ( 1997). A plastid of probable green algal origin in Apicomplexan parasites. Science 275, 14851489.CrossRefGoogle Scholar
KRIEK, N., TILLEY, L., HORROCKS, P., PINCHES, R., ELFORD, B. C., FERGUSON, D. J., LINGELBACH, K. & NEWBOLD, C. I. ( 2003). Characterization of the pathway for transport of the cytoadherence-mediating protein, PfEMP1, to the host cell surface in malaria parasite-infected erythrocytes. Molecular Microbiology 50, 12151227.CrossRefGoogle Scholar
KUMAR, N., KOSKI, G., HARADA, M., AIKAWA, M. & ZHENG, H. ( 1991). Induction and localization of Plasmodium falciparum stress proteins related to the heat shock protein 70 family. Molecular and Biochemical Parasitology 48, 4758.CrossRefGoogle Scholar
LA GRECA, N., HIBBS, A. R., RIFFKIN, C., FOLEY, M. & TILLEY, L. ( 1997). Identification of an endoplasmic reticulum-resident calcium-binding protein with multiple EF-hand motifs in asexual stages of Plasmodium falciparum. Molecular and Biochemical Parasitology 89, 283293.CrossRefGoogle Scholar
LANFORD, R. E., KANDA, P. & KENNEDY, R. C. ( 1986). Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46, 575582.CrossRefGoogle Scholar
LAUER, S. A., RATHOD, P. K., GHORI, N. & HALDAR, K. ( 1997). A membrane network for nutrient import in red cells infected with the malaria parasite. Science 276, 11221125.CrossRefGoogle Scholar
LETOURNEUR, F., GAYNOR, E. C., HENNECKE, S., DEMOLLIERE, C., DUDEN, R., EMR, S. D., RIEZMAN, H. & COSSON, P. ( 1994). Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79, 11991207.CrossRefGoogle Scholar
LEW, V. L., TIFFERT, T. & GINSBURG, H. ( 2003). Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum-infected red blood cells. Blood 101, 41894194.CrossRefGoogle Scholar
LEWIS, M. J. & PELHAM, H. R. ( 1990). A human homologue of the yeast HDEL receptor. Nature, London 348, 162163.CrossRefGoogle Scholar
LEWIS, M. J. & PELHAM, H. R. ( 1992). Sequence of a second human KDEL receptor. Journal of Molecular Biology 226, 913916.CrossRefGoogle Scholar
LEWIS, M. J., SWEET, D. J. & PELHAM, H. R. ( 1990). The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell 61, 13591363.CrossRefGoogle Scholar
LILL, R. & NEUPERT, W. ( 1996). Mechanisms of protein import across the mitochondrial outer membrane. Trends in Cell Biology 6, 5661.CrossRefGoogle Scholar
LING, I. T., FLORENS, L., DLUZEWSKI, A. R., KANEKO, O., GRAINGER, M., YIM LIM, B. Y., TSUBOI, T., HOPKINS, J. M., JOHNSON, J. R., TORII, M., BANNISTER, L. H., YATES, J. R., 3RD, HOLDER, A. A. & MATTEI, D. ( 2004). The Plasmodium falciparum clag9 gene encodes a rhoptry protein that is transferred to the host erythrocyte upon invasion. Molecular Microbiology 52, 107118.CrossRefGoogle Scholar
LINGELBACH, K. ( 1997). Protein trafficking in the Plasmodium-falciparum-infected erythrocyte – from models to mechanisms. Annals of Tropical Medicine and Parasitology 91, 543549.Google Scholar
LINGELBACH, K. R. ( 1993). Plasmodium falciparum: a molecular view of protein transport from the parasite into the host erythrocyte. Experimental Parasitology 76, 318327.CrossRefGoogle Scholar
LOPEZ-ESTRANO, C., BHATTACHARJEE, S., HARRISON, T. & HALDAR, K. ( 2003). Cooperative domains define a unique host cell-targeting signal in Plasmodium falciparum-infected erythrocytes. Proceedings of the National Academy of Sciences, USA 100, 1240212407.CrossRefGoogle Scholar
LORIA, P., MILLER, S., FOLEY, M. & TILLEY, L. ( 1999). Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. The Biochemical Journal 339 (Pt 2), 363370.Google Scholar
LUSTIGMAN, S., ANDERS, R. F., BROWN, G. V. & COPPEL, R. L. ( 1988). A component of an antigenic rhoptry complex of Plasmodium falciparum is modified after merozoite invasion. Molecular and Biochemical Parasitology 30, 217224.CrossRefGoogle Scholar
MACASEV, D., WHELAN, J., NEWBIGIN, E., SILVA-FILHO, M. C., MULHERN, T. D. & LITHGOW, T. ( 2004). Tom22', an 8 kDa trans-site receptor in plants and protozoans, is a conserved feature of the TOM complex that appeared early in the evolution of eukaryotes. Molecular Biology and Evolution 21, 15571564.CrossRefGoogle Scholar
MAGOWAN, C., NUNOMURA, W., WALLER, K. L., YEUNG, J., LIANG, J., VAN DORT, H., LOW, P. S., COPPEL, R. L. & MOHANDAS, N. ( 2000). Plasmodium falciparum histidine-rich protein 1 associates with the band 3 binding domain of ankyrin in the infected red cell membrane. Biochimica et Biophysica Acta 1502, 461470.CrossRefGoogle Scholar
MANNING-CELA, R., MARQUEZ, C., FRANCO, E., TALAMAS-ROHANA, P. & MEZA, I. ( 2003). BFA-sensitive and insensitive exocytic pathways in Entamoeba histolytica trophozoites: their relationship to pathogenesis. Cellular Microbiology 5, 921932.CrossRefGoogle Scholar
MATTEI, D., BERRY, L., COUFFIN, S. & RICHARD, O. ( 1999). The transport of the histidine-rich protein I from Plasmodium falciparum is insensitive to brefeldin A. Novartis Foundation Symposium 226, 215226; discussion 227–230.Google Scholar
MATTEI, D. & SCHERF, A. ( 1992 a). The Pf332 gene codes for a megadalton protein of Plasmodium falciparum asexual blood stages. Memorias do Institito Oswaldo Cruz 87 (Suppl. 3), 163168.Google Scholar
MATTEI, D. & SCHERF, A. ( 1992 b). The Pf332 gene of Plasmodium falciparum codes for a giant protein that is translocated from the parasite to the membrane of infected erythrocytes. Gene 110, 7179.Google Scholar
MAYER, A. & WICKNER, W. ( 1997). Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). Journal of Cell Biology 136, 307317.CrossRefGoogle Scholar
MILLER, L. H., BARUCH, D. I., MARSH, K. & DOUMBO, O. K. ( 2002). The pathogenic basis of malaria. Nature, London 415, 673679.CrossRefGoogle Scholar
MIURA, S., KASUYA-ARAI, I., MORI, H., MIYAZAWA, S., OSUMI, T., HASHIMOTO, T. & FUJIKI, Y. ( 1992). Carboxyl-terminal consensus Ser-Lys-Leu-related tripeptide of peroxisomal proteins functions in vitro as a minimal peroxisome-targeting signal. Journal of Biological Chemistry 267, 1440514411.Google Scholar
MOHMMED, A., KISHORE, S., DASARADHI, P. V., PATRA, K., MALHOTRA, P. & CHAUHAN, V. S. ( 2003). Cloning and characterization of Plasmodium falciparum homologs of nuclear import factors, karyopherin alpha and karyopherin beta. Molecular and Biochemical Parasitology 127, 199203.CrossRefGoogle Scholar
NACER, A., BERRY, L., SLOMIANNY, C. & MATTEI, D. ( 2001). Plasmodium falciparum signal sequences: simply sequences or special signals? International Journal for Parasitology 31, 13711379.Google Scholar
NAKAI, K. & HORTON, P. ( 1999). PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends in Biochemical Sciences 24, 3436.CrossRefGoogle Scholar
NEUPERT, W. & BRUNNER, M. ( 2002). The protein import motor of mitochondria. Nature Reviews Molecular Cell Biology 3, 555565.CrossRefGoogle Scholar
NGO, H. M., YANG, M., PAPROTKA, K., PYPAERT, M., HOPPE, H. & JOINER, K. A. ( 2003). AP-1 in Toxoplasma gondii mediates biogenesis of the rhoptry secretory organelle from a post-Golgi compartment. Journal of Biological Chemistry 278, 53435352.CrossRefGoogle Scholar
NIKAIDO, H. ( 2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews 67, 593656.CrossRefGoogle Scholar
NILSSON, T., JACKSON, M. & PETERSON, P. A. ( 1989). Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell 58, 707718.CrossRefGoogle Scholar
NILSSON, T. & WARREN, G. ( 1994). Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus. Current Opinions in Cell Biology 6, 517521.CrossRefGoogle Scholar
NOLTE, D., HUNDT, E., LANGSLEY, G. & KNAPP, B. ( 1991). A Plasmodium falciparum blood stage antigen highly homologous to the glycophorin binding protein GBP. Molecular and Biochemical Parasitology 49, 253264.CrossRefGoogle Scholar
O'DONNELL, R. A., FREITAS-JUNIOR, L. H., PREISER, P. R., WILLIAMSON, D. H., DURAISINGH, M., McELWAIN, T. F., SCHERF, A., COWMAN, A. F. & CRABB, B. S. ( 2002). A genetic screen for improved plasmid segregation reveals a role for Rep20 in the interaction of Plasmodium falciparum chromosomes. The EMBO Journal 21, 12311239.CrossRefGoogle Scholar
ORCI, L., STAMNES, M., RAVAZZOLA, M., AMHERDT, M., PERRELET, A., SOLLNER, T. H. & ROTHMAN, J. E. ( 1997). Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90, 335349.CrossRefGoogle Scholar
OSTERMANN, J., ORCI, L., TANI, K., AMHERDT, M., RAVAZZOLA, M., ELAZAR, Z. & ROTHMAN, J. E. ( 1993). Stepwise assembly of functionally active transport vesicles. Cell 75, 10151025.CrossRefGoogle Scholar
PAGOLA, S., STEPHENS, P. W., BOHLE, D. S., KOSAR, A. D. & MADSEN, S. K. ( 2000). The structure of malaria pigment beta-haematin. Nature 404, 307310.CrossRefGoogle Scholar
PANTON, L. J., McPHIE, P., MALOY, W. L., WELLEMS, T. E., TAYLOR, D. W. & HOWARD, R. J. ( 1989). Purification and partial characterization of an unusual protein of Plasmodium falciparum: histidine-rich protein II. Molecular and Biochemical Parasitology 35, 149160.CrossRefGoogle Scholar
PAPALEXIS, V., SIOMOS, M. A., CAMPANALE, N., GUO, X., KOCAK, G., FOLEY, M. & TILLEY, L. ( 2001). Histidine-rich protein 2 of the malaria parasite, Plasmodium falciparum, is involved in detoxification of the by-products of haemoglobin degradation. Molecular and Biochemical Parasitology 115, 7786.CrossRefGoogle Scholar
PEPPERKOK, R., SCHEEL, J., HORSTMANN, H., HAURI, H. P., GRIFFITHS, G. & KREIS, T. E. ( 1993). Beta-COP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo. Cell 74, 7182.CrossRefGoogle Scholar
PETERSON, M. G., CREWTHER, P. E., THOMPSON, J. K., CORCORAN, L. M., COPPEL, R. L., BROWN, G. V., ANDERS, R. F. & KEMP, D. J. ( 1988). A second antigenic heat shock protein of Plasmodium falciparum. DNA 7, 7178.CrossRefGoogle Scholar
PETERSON, M. G., MARSHALL, V. M., SMYTHE, J. A., CREWTHER, P. E., LEW, A., SILVA, A., ANDERS, R. F. & KEMP, D. J. ( 1989). Integral membrane protein located in the apical complex of Plasmodium falciparum. Molecular and Cellular Biology 9, 31513154.CrossRefGoogle Scholar
POLOGE, L. G., PAVLOVEC, A., SHIO, H. & RAVETCH, J. V. ( 1987). Primary structure and subcellular localization of the knob-associated histidine-rich protein of Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 84, 71397143.CrossRefGoogle Scholar
PRZYBORSKI, J. M., BARTELS, K., LANZER, M. & ANDREWS, K. T. ( 2003 a). The histone H4 gene of Plasmodium falciparum is developmentally transcribed in asexual parasites. Parasitology Research 90, 387389.Google Scholar
PRZYBORSKI, J. M., WICKERT, H., KROHNE, G. & LANZER, M. ( 2003 b). Maurer's clefts – a novel secretory organelle? Molecular and Biochemical Parasitology 132, 1726.Google Scholar
REISS, M., VIEBIG, N., BRECHT, S., FOURMAUX, M. N., SOETE, M., DI CRISTINA, M., DUBREMETZ, J. F. & SOLDATI, D. ( 2001). Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii. Journal of Cell Biology 152, 563578.CrossRefGoogle Scholar
ROBBINS, J., DILWORTH, S. M., LASKEY, R. A. & DINGWALL, C. ( 1991). Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615623.CrossRefGoogle Scholar
ROBINSON, M. S. ( 1994). The role of clathrin, adaptors and dynamin in endocytosis. Current Opinions in Cell Biology 6, 538544.CrossRefGoogle Scholar
RODRIGUE, A., CHANAL, A., BECK, K., MULLER, M. & WU, L. F. ( 1999). Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. Journal of Biological Chemistry 274, 1322313228.CrossRefGoogle Scholar
ROOS, D. S., CRAWFORD, M. J., DONALD, R. G., FOHL, L. M., HAGER, K. M., KISSINGER, J. C., REYNOLDS, M. G., STRIEPEN, B. & SULLIVAN, W. J., Jr. ( 1999). Transport and trafficking: Toxoplasma as a model for Plasmodium. Novartis Foundation Symposium 226, 176195; discussion 195–178.Google Scholar
ROOS, D. S., CRAWFORD, M. J., DONALD, R. G., FRAUNHOLZ, M., HARB, O. S., HE, C. Y., KISSINGER, J. C., SHAW, M. K. & STRIEPEN, B. ( 2002). Mining the Plasmodium genome database to define organellar function: what does the apicoplast do? Philosophical Transactions of the Royal Society of London, Series B 357, 3546.Google Scholar
SAM-YELLOWE, T. Y., FLORENS, L., JOHNSON, J. R., WANG, T., DRAZBA, J. A., LE ROCH, K. G., ZHOU, Y., BATALOV, S., CARUCCI, D. J., WINZELER, E. A. & YATES, J. R., 3RD. ( 2004). A Plasmodium gene family encoding Maurer's cleft membrane proteins: structural properties and expression profiling. Genome Research 14, 10521059.CrossRefGoogle Scholar
SATO, S., CLOUGH, B., COATES, L. & WILSON, R. J. ( 2004). Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 155, 117125.CrossRefGoogle Scholar
SATO, S., RANGACHARI, K. & WILSON, R. J. ( 2003). Targeting GFP to the malarial mitochondrion. Molecular and Biochemical Parasitology 130, 155158.CrossRefGoogle Scholar
SATO, S. & WILSON, R. J. ( 2004). The use of DsRED in single- and dual-color fluorescence labeling of mitochondrial and plastid organelles in Plasmodium falciparum. Molecular and Biochemical Parasitology 134, 175179.CrossRefGoogle Scholar
SAUL, A., COOPER, J., HAUQUITZ, D., IRVING, D., CHENG, Q., STOWERS, A. & LIMPAIBOON, T. ( 1992). The 42-kilodalton rhoptry-associated protein of Plasmodium falciparum. Molecular and Biochemical Parasitology 50, 139149.CrossRefGoogle Scholar
SAUL, A., YEGANEH, F. & HOWARD, R. J. ( 1992). Conservation of repeating structures in the PfEMP2/MESA protein of Plasmodium falciparum. Immunology and Cell Biology 70, 353355.CrossRefGoogle Scholar
SERAFINI, T., STENBECK, G., BRECHT, A., LOTTSPEICH, F., ORCI, L., ROTHMAN, J. E. & WIELAND, F. T. ( 1991). A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein beta-adaptin. Nature, London 349, 215220.CrossRefGoogle Scholar
SIMMONS, D., WOOLLETT, G., BERGIN-CARTWRIGHT, M., KAY, D. & SCAIFE, J. ( 1987). A malaria protein exported into a new compartment within the host erythrocyte. The EMBO Journal 6, 485491.Google Scholar
SMITH, J. D., CHITNIS, C. E., CRAIG, A. G., ROBERTS, D. J., HUDSON-TAYLOR, D. E., PETERSON, D. S., PINCHES, R., NEWBOLD, C. I. & MILLER, L. H. ( 1995). Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101110.CrossRefGoogle Scholar
SOLL, J. & SCHLEIFF, E. ( 2004). Protein import into chloroplasts. Nature Reviews Molecular Cell Biology 5, 198208.CrossRefGoogle Scholar
SPIELMANN, T., FERGUSEN, D. J. & BECK, H. P. ( 2003). Etramps, a new Plasmodium falciparum gene family coding for developmentally regulated and highly charged membrane proteins located at the parasite-host cell interface. Molecular Biology of the Cell 14, 15291544.CrossRefGoogle Scholar
SPYCHER, C., KLONIS, N., SPIELMANN, T., KUMP, E., STEIGER, S., TILLEY, L. & BECK, H. P. ( 2003). MAHRP-1, a novel Plasmodium falciparum histidine-rich protein, binds ferriprotoporphyrin IX and localises to the Maurer's clefts. Journal of Biological Chemistry 278, 3537335383.CrossRefGoogle Scholar
STENZEL, D. J. & KARA, U. A. ( 1989). Sorting of malarial antigens into vesicular compartments within the host cell cytoplasm as demonstrated by immunoelectron microscopy. European Journal of Cell Biology 49, 311318.Google Scholar
SU, X. Z., HEATWOLE, V. M., WERTHEIMER, S. P., GUINET, F., HERRFELDT, J. A., PETERSON, D. S., RAVETCH, J. A. & WELLEMS, T. E. ( 1995). The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 89100.CrossRefGoogle Scholar
SYIN, C. & GOLDMAN, N. D. ( 1996). Cloning of a Plasmodium falciparum gene related to the human 60-kDa heat shock protein. Molecular and Biochemical Parasitology 79, 1319.CrossRefGoogle Scholar
TARASCHI, T. F., O'DONNELL, M., MARTINEZ, S., SCHNEIDER, T., TRELKA, D., FOWLER, V. M., TILLEY, L. & MORIYAMA, Y. ( 2003). Generation of an erythrocyte vesicle transport system by Plasmodium falciparum malaria parasites. Blood 102, 34203426.CrossRefGoogle Scholar
TARASCHI, T. F., TRELKA, D., MARTINEZ, S., SCHNEIDER, T. & O'DONNELL, M. E. ( 2001). Vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes. International Journal for Parasitology 31, 13811391.CrossRefGoogle Scholar
TAYLOR, D. W., PARRA, M., CHAPMAN, G. B., STEARNS, M. E., RENER, J., AIKAWA, M., UNI, S., ALEY, S. B., PANTON, L. J. & HOWARD, R. J. ( 1987). Localization of Plasmodium falciparum histidine-rich protein 1 in the erythrocyte skeleton under knobs. Molecular and Biochemical Parasitology 25, 165174.CrossRefGoogle Scholar
TRELKA, D. P., SCHNEIDER, T. G., REEDER, J. C. & TARASCHI, T. F. ( 2000). Evidence for vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes. Molecular and Biochemical Parasitology 106, 131145.CrossRefGoogle Scholar
TRUSCOTT, K. N., BRANDNER, K. & PFANNER, N. ( 2003). Mechanisms of protein import into mitochondria. Current Biology 13, R326337.CrossRefGoogle Scholar
VAN DOOREN, G. G., SU, V., D'OMBRAIN, M. C. & McFADDEN, G. I. ( 2002). Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. Journal of Biological Chemistry 277, 2361223619.CrossRefGoogle Scholar
VAN WYE, J., GHORI, N., WEBSTER, P., MITSCHLER, R. R., ELMENDORF, H. G. & HALDAR, K. ( 1996). Identification and localization of rab6, separation of rab6 from ERD2 and implications for an ‘unstacked’ Golgi, in Plasmodium falciparum. Molecular and Biochemical Parasitology 83, 107120.CrossRefGoogle Scholar
WALLER, K. L., COOKE, B. M., NUNOMURA, W., MOHANDAS, N. & COPPEL, R. L. ( 1999). Mapping the binding domains involved in the interaction between the Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and the cytoadherence ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1). Journal of Biological Chemistry 274, 2380823813.Google Scholar
WALLER, K. L., NUNOMURA, W., COOKE, B. M., MOHANDAS, N. & COPPEL, R. L. ( 2002). Mapping the domains of the cytoadherence ligand Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) that bind to the knob-associated histidine-rich protein (KAHRP). Molecular and Biochemical Parasitology 119, 125129.CrossRefGoogle Scholar
WALLER, R. F., KEELING, P. J., DONALD, R. G., STRIEPEN, B., HANDMAN, E., LANG-UNNASCH, N., COWMAN, A. F., BESRA, G. S., ROOS, D. S. & McFADDEN, G. I. ( 1998). Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 95, 1235212357.CrossRefGoogle Scholar
WALLER, R. F., KEELING, P. J., VAN DOOREN, G. G. & MCFADDEN, G. I. ( 2003). Comment on “A green algal apicoplast ancestor”. Science 301, 49.CrossRefGoogle Scholar
WALLER, R. F., REED, M. B., COWMAN, A. F. & McFADDEN, G. I. ( 2000). Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. The EMBO Journal 19, 17941802.CrossRefGoogle Scholar
WARHURST, D. C., CRAIG, J. C. & ADAGU, I. S. ( 2002). Lysosomes and drug resistance in malaria. Lancet 360, 15271529.CrossRefGoogle Scholar
WATERKEYN, J. G., WICKHAM, M. E., DAVERN, K. M., COOKE, B. M., COPPEL, R. L., REEDER, J. C., CULVENOR, J. G., WALLER, R. F. & COWMAN, A. F. ( 2000). Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts cytoadherence of malaria-infected red blood cells. The EMBO Journal 19, 28132823.CrossRefGoogle Scholar
WATERS, M. G., SERAFINI, T. & ROTHMAN, J. E. ( 1991). ‘Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature, London 349, 248251.CrossRefGoogle Scholar
WEIGHARDT, F., BIAMONTI, G. & RIVA, S. ( 1995). Nucleo-cytoplasmic distribution of human hnRNP proteins: a search for the targeting domains in hnRNP A1. Journal of Cell Science 108, 545555.Google Scholar
WHITNEY, J. A., GOMEZ, M., SHEFF, D., KREIS, T. E. & MELLMAN, I. ( 1995). Cytoplasmic coat proteins involved in endosome function. Cell 83, 703713.CrossRefGoogle Scholar
WICKERT, H., ROHRBACH, P., SCHERER, S., KROHNE, G. & LANZER, M. ( 2003 a). A putative Sec23 homologue of Plasmodium falciparum is located in Maurer's clefts. Molecular and Biochemical Parasitology 129, 209213.Google Scholar
WICKERT, H., WISSING, F., ANDREWS, K. T., STICH, A., KROHNE, G. & LANZER, M. ( 2003 b). Evidence for trafficking of PfEMP1 to the surface of P. falciparum-infected erythrocytes via a complex membrane network. European Journal of Cell Biology 82, 271284.Google Scholar
WICKHAM, M. E., RUG, M., RALPH, S. A., KLONIS, N., McFADDEN, G. I., TILLEY, L. & COWMAN, A. F. ( 2001). Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. The EMBO Journal 20, 56365649.CrossRefGoogle Scholar
WINSTANLEY, P. ( 2001). Modern chemotherapeutic options for malaria. Lancet Infectious Diseases 1, 242250.CrossRefGoogle Scholar
WISER, M. F., LANNERS, H. N., BAFFORD, R. A. & FAVALORO, J. M. ( 1997). A novel alternate secretory pathway for the export of Plasmodium proteins into the host erythrocyte. Proceedings of the National Academy of Sciences, USA 94, 91089113.CrossRefGoogle Scholar
WRENGER, C. & MÜLLER, S. ( 2004). The human malaria parasite Plasmodium falciparum has distinct organelle-specific lipoylation pathways. Molecular Microbiology 53, 103113.CrossRefGoogle Scholar
XU, X., YAMASAKI, H., FENG, Z. & AOKI, T. ( 2002). Molecular cloning and characterization of Plasmodium falciparum transportin. Parasitology Research 88, 391394.CrossRefGoogle Scholar