Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-01T10:02:15.079Z Has data issue: false hasContentIssue false

The prevalence of naturally acquired multiple infections of Wuchereria bancrofti and human malarias in anophelines

Published online by Cambridge University Press:  06 April 2009

T. R. Burkot
Affiliation:
Papua New Guinea Institute of Medical Research, P.O. Box 378, Madang, Papua New Guinea Tropical Health Program, Queensland Institute of Medical Research, Bramston Terrace, Herston, Queensland 4006, Australia
L. Molineaux
Affiliation:
World Health Organization, CH- 1211 Geneva 27, Switzerland
P. M. Graves
Affiliation:
Papua New Guinea Institute of Medical Research, P.O. Box 378, Madang, Papua New Guinea
R. Paru
Affiliation:
Papua New Guinea Institute of Medical Research, P.O. Box 378, Madang, Papua New Guinea
D. Battistutta
Affiliation:
Tropical Health Program, Queensland Institute of Medical Research, Bramston Terrace, Herston, Queensland 4006, Australia
H. Dagoro
Affiliation:
Papua New Guinea Institute of Medical Research, P.O. Box 378, Madang, Papua New Guinea
A. Barnes
Affiliation:
Tropical Health Education Program, University of Queensland Medical School, Herston Road, Brisbane, Queensland 4006, Australia
R. A. Wirtz
Affiliation:
Walter Reed Army Institute of Research, Washington, D.C. 20307, USA
P. Garner
Affiliation:
Papua New Guinea Institute of Medical Research, P.O. Box 378, Madang, Papua New Guinea

Summary

Malaria and filaria infection rates were determined for anopheline mosquitoes collected whilst biting and resting in village houses in Papua New Guinea. The number of anophelines infected with both parasites was greater than expected from the infection rates of each parasite and this difference was significant in resting collections. The excess of multiply infected mosquitoes is probably a result of a vector population composed of individuals with differing numbers of opportunities to become infected. Malaria-positive, Anopheles punctulatus from resting catches had a significantly greater number of Stage 3 Wuchereria bancroftilarvae than malaria-negative mosquitoes. However, multiply infected mosquitoes appear to suffer greater mortality than non-infected or singly infected mosquitoes when the filarial worm reaches the third stage. Any potential increase in transmission resulting from multiple infections is thereby offset by a greater mortality rate in these mosquitoes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belkin, J. N. (1962). The Mosquitoes of the South Pacific (Diptera, Culicidae), vol. 1. pp. 123–47. Berkeley: University of California Press.Google Scholar
Berry, W. J., Rowley, W. A. & Christensen, B. M. (1987). Influence of developing Dirofilaria immitis on the spontaneous flight activity of Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology 24, 699701.CrossRefGoogle ScholarPubMed
Bryan, J. H. (1986). Vectors of Wuchereria bancrofti in the Sepik Provinces of Papua New Guinea. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 123–31.CrossRefGoogle ScholarPubMed
Burkot, T. R., Graves, P. M., Cattani, J. A., Wirtz, R. A. & Gibson, F. D. (1987). The efficiency of sporozoite transmission of the human malarias, Plasmodium falciparum and P. vivax. Bulletin of the World Health Organization 65, 375–80.Google ScholarPubMed
Burkot, T. R., Graves, P. M., Paru, R. & Lagog, M. (1988 b). Mixed blood feeding by the malaria vectors in the Anopheles punctulatus complex (Diptera: Culicidae). Journal of Medical Entomology 25, 205–13.CrossRefGoogle ScholarPubMed
Burkot, T. R., Graves, P. M., Paru, R., Wirtz, R. A. & Heywood, P. (1988 a). Human malaria transmission studies in the Anopheles punctulatus complex in Papua New Guinea: sporozoite rates, inoculation rates and sporozoite densities. American Journal of Tropical Medicine and Hygiene 39, 135–44.CrossRefGoogle ScholarPubMed
Burkot, T. R., Narara, A., Paru, R., Graves, P. M. & Garner, P. (1989). Human host selection by anophelines: no evidence for preferential selection of malaria or microfilariae infected individuals in a hyperendemic area. Parasitology 97, 337–42.CrossRefGoogle Scholar
Coleman, R. E., Edman, J. D. & Semprevivo, L. H. (1988). Interactions between malaria (Plasmodium yoelii) and leishmaniasis (Leishmania mexicana amazonensis): effect of concomitant infection on host activity, host body temperature, and vector engorgement success. Journal of Medical Entomology 25, 467–71.CrossRefGoogle ScholarPubMed
Cox, F. E. G. (1978). Concomitant infections. In Rodent Malaria (ed. Killick-Kendrick, R. & Peters, W.), pp. 309–43. London: Academic Press.Google Scholar
Hockmeyer, W. T., Schieffer, B. A., Redington, B. C. & Eldridge, B. F. (1975). Brugia pahangi: effects upon the flight capability of Aedes aegypti. Experimental Parasitology 38, 15.CrossRefGoogle ScholarPubMed
Graves, P. M., Burkot, T. R., Carter, R., Cattani, J. A., Lagog, M., Parker, J., Brabin, B. J., Gibson, F. D., Bradley, D. J. & Alpers, M. P. (1988). Measurement of malarial infectivity of human populations to mosquitoes in the Madang area, Papua New Guinea. Parasitology 96, 251–63.CrossRefGoogle ScholarPubMed
Graves, P. M., Burkot, T. R., Saul, A., Hayes, R. & Carter, R. (1989). Estimation of anopheline survival rate, vectorial capacity, and mosquito infection probability from malaria vector infection rates in villages near Madang, Papua New Guinea. Journal of Applied Ecology 26 (in the Press).Google Scholar
Javadian, E. & Macdonald, W. W. (1974). The effect of infection with Brugia pahangi and Dirofilaria repens on the egg production of Aedes aegypti. Annals of Tropical Medicine and Parasitology 68, 477–81.CrossRefGoogle ScholarPubMed
Klein, T. A., Harrison, B. A., Grove, J. S., Dixon, S. V. & Andre, R. G. (1986). Correlation of survival rates of Anopheles dirus A (Diptera: Culicidae) with different infection densities of Plasmodium cynomolgi. Bulletin of the World Health Organization 64, 901–7.Google ScholarPubMed
Millott, S. M. & Cox, F. E. G. (1985). Interactions between Trypanosoma brucei and Babesia spp. and Plasmodium spp. in mice. Parasitology 90, 241–54.CrossRefGoogle ScholarPubMed
Molineaux, L., Storey, J., Cohen, J. E. & Thomas, A. (1980). A longitudinal study of human malaria in the west African savanna in the absence of control measures: relationships between different Plasmodium species, in particular P. falciparum and P. malariae. American Journal of Tropical Medicine and Hygiene 29, 725–37.CrossRefGoogle ScholarPubMed
Nelson, G. S. (1959). The identification of infective filarial larvae in mosquitoes: with a note on the species found in ‘wild’ mosquitoes on the Kenya Coast. Journal of Helminthology 33, 233–56.CrossRefGoogle ScholarPubMed
Perrone, J. B. & Spielman, A. (1986). Microfilarial perforation of the midgut of a mosquito. Journal of Parasitology 72, 723–7.CrossRefGoogle ScholarPubMed
Ponnudurai, T., Billingsley, P. F. & Rudin, W. (1988). Differential infectivity of Plasmodium for mosquitoes. Parasitology Today 4, 319–21.CrossRefGoogle ScholarPubMed
Richie, T. L. (1988). Interactions between malaria parasites infecting the same vertebrate host. Parasitology 96, 607–39.CrossRefGoogle ScholarPubMed
Rowland, M. & Boersma, E. (1988). Changes in the spontaneous flight activity of the mosquito Anopheles stephensi by parasitization with the rodent malaria Plasmodium yoelii. Parasitology 97, 221–7.Google ScholarPubMed
Schmidt, L. H. & Essinger, J. H. (1981). Courses of infection with Plasmodium falciparum in owl monkeys displaying a microfilaremia. American Journal of Tropical Medicine and Hygiene 30, 511.CrossRefGoogle ScholarPubMed
Townson, H. (1970). The effect of infection with Brugia pahangi on the flight of Aedes aegypti. Annals of Tropical Medicine and Parasitology 64, 411–20.CrossRefGoogle ScholarPubMed
Townson, H. (1971). Mortality of various genotypes of the mosquito Aedes aegypti following the uptake of microfilariae of Brugia pahangi. Annals of Tropical Medicine and Parasitology 65, 93106.CrossRefGoogle ScholarPubMed
Turrell, M. J., Rossingnol, P. A., Spielman, A., Rossi, C. A. & Bailey, C. L. (1984). Enhanced arboviral transmission by mosquitoes that concurrently ingested microfilariae. Science 225, 1039–41.CrossRefGoogle Scholar
Williams, R. B. (1985). Plasmodium gallinaceum and subsequent Eimeria acervulina infections in chickens are not synergistic. Parasitology 90, 237–40.CrossRefGoogle Scholar
Wirtz, R. A., Burkot, T. R., Andre, R. G., Rosenberg, R., Collins, W. E. & Roberts, D. R. (1985). Identification of Plasmodium vivax sporozoites in mosquitoes using an enzyme-linked immunosorbent assay. American Journal of Tropical Medicine and Hygiene 34, 1048–54.CrossRefGoogle ScholarPubMed
Wirtz, R. A., Zavala, F., Charoenvit, Y., Campbell, G. H., Burkot, T. R., Schneider, I., Esser, K. M., Beaudoin, R. L. & Andre, R. G. (1987). Comparative testing of Plasmodium falciparum sporozoite monoclonal antibodies for ELISA development. Bulletin of the World Health Organization 65, 3945.Google ScholarPubMed