Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-19T11:06:58.028Z Has data issue: false hasContentIssue false

Phylogeny and evolution of the piroplasms

Published online by Cambridge University Press:  06 April 2009

M. T. E. P. Allsopp
Affiliation:
Onderstepoort Veterinary Institute, Private Bag X5, Onderstepoort 0110, South Africa
T. Cavalier-Smith
Affiliation:
University of British Columbia, Department of Botany, 6270 University Boulevard, Vancouver V6T 1Z4, Canada
D. T. De Waal
Affiliation:
Onderstepoort Veterinary Institute, Private Bag X5, Onderstepoort 0110, South Africa
B. A. Allsopp
Affiliation:
Onderstepoort Veterinary Institute, Private Bag X5, Onderstepoort 0110, South Africa

Summary

Small subunit ribosomal RNA (srRNA) genes of three Theileria species, one Cytauxzoon and four Babesia species were amplified using the polymerase chain reaction (PCR), cloned and sequenced. Our sequences were aligned with srRNA sequences previously published for eight species of Apicomplexa, one ciliate and one dinoflagellate, the last two being included as free-living outgroup species. Phylogenetic relationships between the organisms were inferred by four in-dependent methods of phylogenetic tree construction using the ciliate Oxytricha nova to root the trees. Our trees fail to show a consensus branching order. They do, however, clearly indicate that the theilerias form a monophyletic taxon derived from a paraphyletic group which includes the species B. equi, C. felis and B. rodhaini. The distance trees indicate that the babesias sensu stricto (B. canis, B. caballi, B. bigemina and B. bovis) form another monophyletic taxon which diverged before the theilerias separated from the above-mentioned paraphyletic group. The parsimony and maximum likelihood trees suggest that the babesias and theilerias are sister taxa, both of which were derived from the paraphyletic group.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allsopp, B. A. & Allsopp, M. T. E. P. (1988). Theileria parva: genomic DNA studies reveal intra-specific sequence diversity. Molecular and Biochemical Parasitology 28, 7784.Google Scholar
Allsopp, B. A., Carrington, D. M., Baylis, A. H., Sohal, S. K., Dolan, T. T. & Iams, K. (1989). Improved characterisation of Theileria parva isolates using polymerase chain reaction and oligonucleotide probes. Molecular and Biochemical Parasitology 35, 137–48.CrossRefGoogle ScholarPubMed
Blouin, E. F., Kocan, A. A., Kocan, K. M. & Hair, J. (1987). Evidence of a limited schizogonous cycle for Cytauxzoon felis in bobcats following exposure to infected ticks. Journal of Wildlife Diseases 23, 499501.CrossRefGoogle ScholarPubMed
De Vos, A. J. (1978). Immunogenicity and pathogenicity of three South African strains of Babesia bovis in Bos indicus cattle. Onderstepoort Journal of Veterinary Research 45, 119–24.Google Scholar
De Vos, A. J. (1982). The identity of bovine Theileria spp. in South Africa. M. Med. Vet. Thesis, University of Pretoria.Google Scholar
De Waal, D. T., Van Heerden, J., Van Den Berg, S. S., Stegman, G. F. & Potgieter, F. T. (1988). Isolation of pure Babesia equi and Babesia caballi organisms in splenectomised horses from endemic areas in South Africa. Onderstepoort Journal of Veterinary Research 55, 33–5.Google Scholar
Elwood, H. J., Olsen, G. J. & Sogin, M. L. (1985). The small subunit ribosomal RNA gene sequences from the hypotricious ciliates Oxytricha nova and Stylonychia pustulata. Molecular Biology and Evolution: 5, 399410.Google Scholar
Fawcett, D. W., Doxsey, S., Stagg, D. A. & Young, A. S. (1982). The entry of sporozoites of Theileria parva into bovine lymphocytes in vitro. Electron microscopic observations. European Journal of Cell Biology 27, 1021.Google ScholarPubMed
Felsenstein, J. (1989). PHYLIP: Phytogeny Inference Package (version 3·2). Cladistics 5, 164–6.Google Scholar
Felsenstein, J. (1993). PHYLIP Version 3·5·1. University of Washington, Seattle.Google Scholar
Ferris, D. H. (1979). A progress report on the status of a new disease of American cats: cytauxzoonosis. Comparative Immunology, Microbiology and Infectious Diseases 1, 269–76.Google Scholar
Gajadhar, A. A., Marquardt, W. C., Hall, R., Gunderson, J., Arizita-Carmona, E. V. & Sogin, M. L. (1991). Ribosomal RNA sequences of Sarcocystis muris, Crypthecodinium cohnii and Theileria annulata reveal evolutionary relationships among apicomplexans, dinoflagellates and ciliates. Molecular and Biochemical Parasitology 45, 147–54.Google Scholar
Garnham, P. C. C. (1966). Malaria Parasites and Other Haemosporidia. Oxford: Blackwell Scientific Publications.Google Scholar
Higgins, D. G., Bleasby, A. J. & Fuchs, R. (1992). CLUSTALV: improved software for multiple sequence alignment. CABIOS 8, 189–91.Google Scholar
Krylov, M. V. (1981). Piroplasmids (fauna, systematics, evolution). In Piroplazmidy. Nauka: Leningrad. Summarized in Abstract 237 in Protozoological Abstracts 6, 24 (1982).Google Scholar
Levine, N. D. (1985). Veterinary Protozoology. Ames: Iowa State University Press.Google Scholar
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning, a Laboratory Manual. New York: Cold Spring Harbor Laboratory Publications.Google Scholar
Mehlhorn, H. & Schein, E. (1984). The piroplasms: life-cycle and sexual stages. In Advances in Parasitology, Vol. 23 (ed. Baker, J. R. & Muller, R.), pp. 37103. London: Academic Press.Google Scholar
Neitz, W. O. (1956). Classification, transmission and biology of piroplasms of domestic animals. Annals of the New York Academy of Sciences 64, 56111.Google Scholar
Pierce, M. A. (1975). Nuttalia Franca, 1909 (Babesiidae) preoccupied by Nuttalia Dall, 1898 (Psammobiidae): A re-appraisal of the taxonomic position of the avian piroplasms. International Journal for Parasitology 5, 285–7.CrossRefGoogle Scholar
Pinder, M., Kar, S., Withey, K. S., Lundin, L. B. & Roelants, G. E. (1981). Proliferation and lymphocyte stimulatory capacity of Theileria infected lymphoblastoid cells before and after the elimination of intracellular parasites. Immunology 44, 5160.Google ScholarPubMed
Saitou, N. & Nei, M. (1987). The Neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–25.Google Scholar
Schein, E., Rehbein, G., Voigt, W. P. & Zweygarth, E. (1981). Babesia equi (Laveran 1901) 1. Development in horses and in lymphocyte culture. Tropenmedizin und Parasitologie 32, 223–7.Google Scholar
Smith, S. (1992). Genetic Data Environment, version 2.0: Documentation. Harvard University and University of Illinois.Google Scholar
Sogin, M. L. (1990). Amplification of ribosomal RNA genes for molecular evolution studies. In PCR Protocols (ed. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.), pp. 307314. San Diego: Academic Press.Google Scholar
Stoltsz, W. H. & Dunsterville, M. T. (1992). In vitro establishment and cultivation of a Cytauxzoon sp. (Theileria sp.) from a sable antelope (Hippotragus niger, Harris 1838). Journal of the South African Veterinary Association 63, 176–86. (Abstract in Proceedings of the 21st PARSA conference).Google Scholar
Uilenberg, G., Franssen, F. F. & Perie, N. M. (1987). Relationship between Cytauxzoon felis and African piroplasmids. Veterinary Parasitology 26, 21–8.Google Scholar
Young, A. S., Mutugi, J. J., Kariuki, D. P., Lampard, D., Maritim, A. C., Ngumi, P. N., Linyoni, A., Leitch, B. L., Ndungu, S. G., Lesan, A. C., Mining, S. K., Grootenhuis, J. G., Orinda, G. O. & Wesonga, D. (1992). Immunisation of cattle against theileriosis in Nakuru District of Kenya by infection and treatment and the introduction of unconventional tick control. Veterinary Parasitology 42, 225–40.Google Scholar