Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T09:33:16.289Z Has data issue: false hasContentIssue false

Patterns of gene expression in schistosomes: localization by whole mount in situ hybridization

Published online by Cambridge University Press:  09 August 2007

G. P. DILLON*
Affiliation:
Biology Department, University of York, Heslington, York YO10 5DD, UK
J. C. ILLES
Affiliation:
Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
H. V. ISAACS
Affiliation:
Biology Department, University of York, Heslington, York YO10 5DD, UK
R. A. WILSON
Affiliation:
Biology Department, University of York, Heslington, York YO10 5DD, UK
*
*Corresponding author: Biology Department, University of York, Heslington, York YO10 5DD, UK. Tel: +44 (0) 1904 328592. Fax: +44 (0) 1904 328505. E-mail: [email protected]

Summary

As a consequence of comprehensive transcriptome analysis followed by sequencing and draft assembly of the genome, the emphasis of schistosome research is shifting from the identification of genes to the characterization of their functions and interactions. Developmental biologists have long used whole mount in situ hybridization (WISH) to determine gene expression patterns, as a vital tool for formulating and testing hypotheses about function. This paper describes the application of WISH to the study of gene expression in larval and adult schistosomes. Fixed worms were permeablized by proteinase K treatment for hybridization with digoxygenin-labelled RNA probes, with binding being detected by alkaline phosphatase-coupled anti-digoxygenin antibodies, and BM Purple substrate. Discrete staining patterns for the transcripts of the molecules Sm29, cathepsin L, antigen 10.3 and chorion were observed in the tegument cell bodies, gut epithelium, oesophageal gland and vitelline lobules, respectively, of adult worms. Transcripts of the molecules SGTP4, GP18-22 and cathepsin L were localized to tegument cell bodies and embryonic gut, respectively, of lung schistosomula. We also showed that Fast Red TR fluorescent substrate can refine the pattern of localization permitting use of confocal microscopy. We believe that method of WISH will find broad application, in synergy with other emerging post-genomic techniques, such as RNA interference, to studies focused at increasing our molecular understanding of schistosomes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bogitsh, B. J., Dalton, J. P., Brady, C. P. and Brindley, P. J. (2001). Gut-associated immunolocalization of the Schistosoma mansoni cysteine proteases, SmCL1 and SmCL2. Journal of Parasitology 87, 237241.CrossRefGoogle ScholarPubMed
Braschi, S., Borges, W. C. and Wilson, R. A. (2006). Proteomic analysis of the schistosome tegument and its surface membranes. Memórias do Instituto Oswaldo Cruz 101 (Suppl. 1), 205212.CrossRefGoogle ScholarPubMed
Braschi, S., Curwen, R. S., Ashton, P. D., Verjovski-Almeida, S. and Wilson, R. A. (2005). The tegument surface membranes of the human blood parasite Schistosoma mansoni: a proteomic analysis after differential extraction. Proteomics 6, 14711482.CrossRefGoogle Scholar
Braschi, S. and Wilson, R. A. (2006). Proteins exposed at the adult schistosome surface revealed by biotinylation. Molecular and Cellular Proteomics 5, 347356.CrossRefGoogle ScholarPubMed
Cardoso, F. C., Pacifico, R. N., Mortara, R. A. and Oliveira, S. C. (2006). Human antibody responses of patients living in endemic areas for schistosomiasis to the tegumental protein Sm29 identified through genomic studies. Clinical and Experimental Immunology 144, 382391.CrossRefGoogle Scholar
Coulson, P. S. (1997). The radiation-attenuated vaccine against schistosomes in animal models: paradigm for a human vaccine? Advances in Parasitology 39, 271336.CrossRefGoogle ScholarPubMed
Cox, W. G. and Singer, V. L. (1999). A high-resolution, fluorescence-based method for localization of endogenous alkaline phosphatase activity. The Journal of Histochemistry and Cytochemistry 47, 14431456.CrossRefGoogle ScholarPubMed
Curwen, R. S., Ashton, P. D., Sundaralingam, S. and Wilson, R. A. (2006). Identification of novel proteases and immunomodulators in the secretions of schistosome cercariae that facilitate host entry. Molecular and Cellular Proteomics 5, 835844.CrossRefGoogle ScholarPubMed
Davis, R. E., Davis, A. H., Carroll, S. M., Rajkovic, A. and Rottman, F. M. (1988). Tandemly repeated exons encode 81-base repeats in multiple, developmentally regulated Schistosoma mansoni transcripts. Molecular and Biochemical Parasitology 8, 47454755.Google ScholarPubMed
Dillon, G. P., Feltwell, T., Skelton, J. P., Ashton, P. D., Coulson, P. S., Quail, M. A., Nikolaidou-Katsaridou, N., Wilson, R. A. and Ivens, A. C. (2006). Microarray analysis identifies genes preferentially expressed in the lung schistosomulum of Schistosoma mansoni. International Journal for Parasitology 36, 18.CrossRefGoogle ScholarPubMed
el-Sherbeini, M., Ramadan, N., Bostian, K. A. and Knopf, P. M. (1991). Cloning and sequence analysis of the Schistosoma mansoni membrane glycoprotein antigen gene GP22. Molecular and Biochemical Parasitology 49, 8398.CrossRefGoogle ScholarPubMed
Harland, R. M. (1991). In-situ hybridization: an improved whole-mount method for Xenopus embryos. Methods in Cell Biology 36, 685695.CrossRefGoogle ScholarPubMed
Jones, K. J., Randall, L. M., McManus, D. P. and Engwerda, C. R. (2004). Laser microdissection microscopy in parasitology: microscopes meet thermocyclers. Trends in Parasitology 20, 502506.CrossRefGoogle ScholarPubMed
Kelly, L. E., Nekkalapudi, S. and El Hodiri, H. M. (2007). Expression of the forkhead transcription factor FoxN4 in progenitor cells in the developing Xenopus laevis retina and brain. Gene Expression Patterns 7, 233238.CrossRefGoogle ScholarPubMed
Kines, K. J., Mann, V. H., Morales, M. E., Shelby, B. D., Kalinna, B. H., Gobert, G. N., Chirgwin, S. R., and Brindley, P. J. (2006). Transduction of Schistosoma mansoni by vesicular stomatitis virus glycoprotein-pseudotyped Moloney murine leukemia retrovirus. Experimental Parasitology 112, 209220.CrossRefGoogle ScholarPubMed
Knobloch, J., Rossi, A., Osman, A., LoVerde, P. T., Klinkert, M. Q. and Grevelding, C. G. (2004). Cytological and biochemical evidence for a gonad-preferential interplay of SmFKBP12 and SmTbetaR-I in Schistosoma mansoni. Molecular and Biochemical Parasitology 138, 227236.CrossRefGoogle ScholarPubMed
Knudsen, G. M., Medzihradszky, K. F., Lim, K. C., Hansell, E. and McKerrow, J. H. (2005). Proteomic analysis of Schistosoma mansoni cercarial secretions. Molecular and Cellular Proteomics 4, 18621875.CrossRefGoogle ScholarPubMed
Koster, B., Dargatz, H., Schroder, J., Hirzmann, J., Haarmann, C., Symmons, P. and Kunz, W. (1988). Identification and localisation of the products of a putative eggshell precursor gene in the vitellarium of Schistosoma mansoni. Molecular and Biochemical Parasitology 31, 183198.CrossRefGoogle ScholarPubMed
Lawrence, J. D. (1973). The ingestion of red blood cells by Schistosoma mansoni. The Journal of Parasitology 59, 6063.CrossRefGoogle ScholarPubMed
Machado-Silver, J. R., Pelajo-Machado, M., Lenzi, H. L. and Gomes, D. C. (1998). Morphological study of adult male worms of Schistosoma mansoni Sambon, 1907 by confocal laser scanning microscopy. Memórias do Instituto Oswaldo Cruz 93 (Suppl. 1), 303307.CrossRefGoogle Scholar
Michel, A., Ghoneim, H., Resto, M., Klinkert, M. Q. and Kunz, W. (1995). Sequence, characterization and localization of a cysteine proteinase cathepsin L in Schistosoma mansoni. Molecular and Biochemical Parasitology 73, 718.CrossRefGoogle ScholarPubMed
Ming, Z., Dong, H., Zhong, Q., Grevelding, C. G. and Jiang, M. (2006). The effect of a mutagen (N-methyl-N-nitro-N-nitrosoguanidine) on cultured cells from adult Schistosoma japonicum. Parasitology Research 98, 430437.CrossRefGoogle ScholarPubMed
Morris, G. P. and Threadgold, L. T. (1968). Ultrastructure of the tegument of adult Schistosoma mansoni. The Journal of Parasitology 54, 1527.CrossRefGoogle ScholarPubMed
Osman, AHMED, Niles, G. and LoVerde, P. T. (2001). Identification and characterization of a Smad2 homologue from Schistosoma mansoni, a transforming growth factor-beta signal transducer. Journal of Biological Chemistry 276, 1007210082.CrossRefGoogle ScholarPubMed
Pownall, M. E., Tucker, A. S., Slack, J. M. and Isaacs, H. V. (1996). eFGF, Xcad3 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development 122, 38813892.CrossRefGoogle Scholar
Shaw, M. K. and Erasmus, D. A. (1982). Schistosoma mansoni: the presence and ultrastructure of vitelline cells in adult males. Journal of Helminthology 56, 5153.CrossRefGoogle ScholarPubMed
Skelly, P. J., Da'dara, A. and Harn, D. A. (2003). Suppression of cathepsin B expression in Schistosoma mansoni by RNA interference. International Journal for Parasitology 33, 363369.CrossRefGoogle ScholarPubMed
Skelly, P. J., Kim, J. W., Cunningham, J. and Shoemaker, C. B. (1994). Cloning, characterization, and functional expression of cDNAs encoding glucose transporter proteins from the human parasite Schistosoma mansoni. Journal of Biological Chemistry 269, 42474253.CrossRefGoogle ScholarPubMed
Urieli-Shoval, S., Meek, R. L., Hanson, R. H., Ferguson, M., Gordon, D. and Benditt, E. P. (1992). Preservation of RNA for in situ hybridization: Carnoy's versus formaldehyde fixation. The Journal of Histochemistry and Cytochemistry 40, 18791885.CrossRefGoogle ScholarPubMed
Verjovski-Almeida, S., DeMarco, R., Martins, E. A., Guimaraes, P. E., Ojopi, E. P., Paquola, A. C., Piazza, J. P., Nishiyama, M. Y. Jr., Kitajima, J. P., Adamson, R. E., Ashton, P. D., Bonaldo, M. F., Coulson, P. S., Dillon, G. P., Farias, L. P., Gregorio, S. P., Ho, P. L., Leite, R. A., Malaquias, L. C., Marques, R. C., Miyasato, P. A., Nascimento, A. L., Ohlweiler, F. P., Reis, E. M., Ribeiro, M. A., Sa, R. G., Stukart, G. C., Soares, M. B., Gargioni, C., Kawano, T., Rodrigues, V., Madeira, A. M., Wilson, R. A., Menck, C. F., Setubal, J. C., Leite, L. C. and Dias-Neto, E. (2003). Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nature Genetics 35, 148157.CrossRefGoogle ScholarPubMed
Wilson, R. A., Ashton, P. D., Braschi, S., Dillon, G. P., Berriman, M. and Ivens, A. (2007). ‘Oming in on schistosomes: prospects and limitations for post-genomics’. Trends in Parasitology 23, 1420.CrossRefGoogle Scholar
Wilson, R. A. and Barnes, P. E. (1974). The tegument of Schistosoma mansoni: observations on the formation, structure and composition of cytoplasmic inclusions in relation to tegument function. Parasitology 68, 239258.CrossRefGoogle ScholarPubMed
Wilson, R. A. and Coulson, P. S. (2006). Schistosome vaccines: a critical appraisal. Memórias do Instituto Oswaldo Cruz 101 (Suppl. 1), 1320.CrossRefGoogle ScholarPubMed