Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-15T07:29:28.178Z Has data issue: false hasContentIssue false

A novel coagulation inhibitor from Schistosoma japonicum

Published online by Cambridge University Press:  14 October 2015

SHIWANTHI L. RANASINGHE*
Affiliation:
Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia School of Public Health, The University of Queensland, Brisbane, QLD, Australia
KATJA FISCHER
Affiliation:
Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
GEOFFREY N. GOBERT
Affiliation:
Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
DONALD P. MCMANUS
Affiliation:
Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
*
*Corresponding Author. Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital, Herston, QLD 4029, Australia. E-mail: [email protected]

Summary

Little is known about the molecular mechanisms whereby the human blood fluke Schistosoma japonicum is able to survive in the host venous blood system. Protease inhibitors are likely released by the parasite enabling it to avoid attack by host proteolytic enzymes and coagulation factors. Interrogation of the S. japonicum genomic sequence identified a gene, SjKI-1, homologous to that encoding a single domain Kunitz protein (Sjp_0020270) which we expressed in recombinant form in Escherichia coli and purified. SjKI-1 is highly transcribed in adult worms and eggs but its expression was very low in cercariae and schistosomula. In situ immunolocalization with anti-SjKI-1 rabbit antibodies showed the protein was present in eggs trapped in the infected mouse intestinal wall. In functional assays, SjKI-1 inhibited trypsin in the picomolar range and chymotrypsin, neutrophil elastase, FXa and plasma kallikrein in the nanomolar range. Furthermore, SjKI-1, at a concentration of 7·5 µm, prolonged 2-fold activated partial thromboplastin time of human blood coagulation. We also demonstrate that SjKI-1 has the ability to bind Ca++. We present, therefore, characterization of the first Kunitz protein from S. japonicum which we show has an anti-coagulant properties. In addition, its inhibition of neutrophil elastase indicates SjKI-1 have an anti-inflammatory role. Having anti-thrombotic properties, SjKI-1 may point the way towards novel treatment for hemostatic disorders.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ansell, J. (2007). Factor Xa or thrombin: is factor Xa a better target? Journal of Thrombosis and Haemostasis 5, 6064.CrossRefGoogle ScholarPubMed
Ashton, P. D., Harrop, R., Shah, B. and Wilson, R. A. (2001). The schistosome egg: development and secretions. Parasitology 122, 329338.CrossRefGoogle ScholarPubMed
Bagot, C. N. and Arya, R. (2008). Virchow and his triad: a question of attribution. British Journal of Haematology 143, 180190.CrossRefGoogle ScholarPubMed
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Brink, L. H., McLaren, D. J. and Smithers, S. R. (1977). Schistosoma mansoni: a comparative study of artificially transformed schistosomula and schistomula recovered after cercarial penetration of isolated skin. Parasitology 74, 7386.CrossRefGoogle Scholar
Cheever, A. W., Macedonia, J. G., Mosimann, J. E. and Cheever, E. A. (1994). Kinetics of egg production and egg excretion by Schistosoma mansoni and S. japonicum in mice infected with a single pair of worms. American Journal of Tropical Medicine and Hygiene 50, 281295.CrossRefGoogle ScholarPubMed
Chu, D., Bungiro, R. D., Ibanez, M., Harrison, L. M., Campodonico, E., Jones, B. F., Mieszczanek, J., Kuzmic, P. and Cappello, M. (2004). Molecular characterization of Ancylostoma ceylanicum Kunitz-type serine protease inhibitor: evidence for a role in hookworm-associated growth delay. Infection and Immunity 72, 22142221.CrossRefGoogle ScholarPubMed
Chua, L.-M., Lim, M.-L. and Wong, B.-S. (2013). The Kunitz-protease inhibitor domain in amyloid precursor protein reduces cellular mitochondrial enzymes expression and function. Biochemical and Biophysical Research Communications 437, 642647. doi: http://dx.doi.org/10.1016/j.bbrc.2013.07.022.CrossRefGoogle ScholarPubMed
Corral-Rodríguez, M. Á., Macedo-Ribeiro, S., Barbosa Pereira, P. J. and Fuentes-Prior, P. (2009). Tick-derived Kunitz-type inhibitors as antihemostatic factors. Insect Biochemistry and Molecular Biology 39, 579595. doi: http://dx.doi.org/10.1016/j.ibmb.2009.07.003.CrossRefGoogle ScholarPubMed
Curry, A. N. and Pierce, J. T. (2007). Conventional and near-patient tests of coagulation. Continuing Education in Anaesthesia, Critical Care & Pain 7, 4550.CrossRefGoogle Scholar
Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M. and Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36, W465469.CrossRefGoogle ScholarPubMed
Di Cera, E. (2009). Serine proteases. IUBMB Life 61, 510515.CrossRefGoogle ScholarPubMed
File, S. (1995). Interaction of schistosome eggs with vascular endothelium. Journal of Parasitology 81, 234238.CrossRefGoogle ScholarPubMed
Foster, C. B., Flanigan, T. P., DeStigter, K. K., Blanton, R., Dumenco, L. L., Gallagher, C. and Ratnoff, O. D. (1992). Inhibition of the activation of Hageman factor (factor XII) by extracts of Schistosoma mansoni . Journal of Laboratory and Clinical Medicine 120, 735739.Google ScholarPubMed
Furie, B. and Furie, B. C. (1988). The molecular basis of blood coagulation. Cell 53, 505518.CrossRefGoogle ScholarPubMed
Gobert, G., Moertel, L., Brindley, P. and McManus, D. (2009). Developmental gene expression profiles of the human pathogen Schistosoma japonicum . BMC Genomics 10, 128.CrossRefGoogle ScholarPubMed
Goldberg, T., Hecht, M., Hamp, T., Karl, T., Yachdav, G., Ahmed, N., Altermann, U., Angerer, P., Ansorge, S., Balasz, K., Bernhofer, M., Betz, A., Cizmadija, L., Do, K. T., Gerke, J., Greil, R., Joerdens, V., Hastreiter, M., Hembach, K., Herzog, M., Kalemanov, M., Kluge, M., Meier, A., Nasir, H., Neumaier, U., Prade, V., Reeb, J., Sorokoumov, A., Troshani, I., Vorberg, S. et al. (2014). LocTree3 prediction of localization. Nucleic Acids Research 42, W350W355.CrossRefGoogle ScholarPubMed
Gonzalez, S., Flo, M., Margenat, M., Duran, R., Gonzalez-Sapienza, G., Grana, M., Parkinson, J., Maizels, R. M., Salinas, G., Alvarez, B. and Fernandez, C. (2009). A family of diverse Kunitz inhibitors from Echinococcus granulosus potentially involved in host-parasite cross-talk. PloS ONE 4, e7009.CrossRefGoogle ScholarPubMed
Hewitson, J. P., Grainger, J. R. and Maizels, R. M. (2009). Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Molecular and Biochemical Parasitology 167, 111.CrossRefGoogle ScholarPubMed
Hong, Y., Sun, A., Zhang, M., Gao, F., Han, Y., Fu, Z., Shi, Y. and Lin, J. (2013). Proteomics analysis of differentially expressed proteins in schistosomula and adult worms of Schistosoma japonicum . Acta Tropica 126, 110.CrossRefGoogle ScholarPubMed
Huang, J., Hao, P., Chen, H., Hu, W., Yan, Q., Liu, F. and Han, Z. G. (2009). Genome-wide identification of Schistosoma japonicum microRNAs using a deep-sequencing approach. PloS ONE 4, e8206.CrossRefGoogle ScholarPubMed
Ignjatovic, V. (2013). Thrombin clotting time. Methods in Molecular Biology 992, 131138.CrossRefGoogle ScholarPubMed
Jung, W. K., Je, J. Y., Kim, H. J. and Kim, S. K. (2002). A novel anticoagulant protein from Scapharca broughtonii . Journal of Biochemistry and Molecular Biology 35, 199205.Google ScholarPubMed
Kapustin, Y., Souvorov, A., Tatusova, T. and Lipman, D. (2008). Splign: algorithms for computing spliced alignments with identification of paralogs. Biology Direct 3, 20.CrossRefGoogle ScholarPubMed
Kelley, L. A. and Sternberg, M. J. (2009). Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4, 363371.CrossRefGoogle Scholar
Koklic, T., Majumder, R. and Lentz, B. R. (2014). Ca2+ switches the effect of PS-containing membranes on Factor Xa from activating to inhibiting: implications for initiation of blood coagulation. The Biochemical Journal 462, 591.CrossRefGoogle ScholarPubMed
Krowarsch, D., Dadlez, M., Buczek, O., Krokoszynska, I., Smalas, A. O. and Otlewski, J. (1999). Interscaffolding additivity: binding of P1 variants of bovine pancreatic trypsin inhibitor to four serine proteases. Journal of Molecular Biology 289, 175186.CrossRefGoogle ScholarPubMed
Kurien, B. T. and Bachmann, M. (2009). Detection of calcium binding by Ro 60 multiple antigenic peptides on nitrocellulose membrane using Quin-2. Methods in Molecular Biology (Clifton, N.J.) 536, 483.CrossRefGoogle ScholarPubMed
Kurioka, A., Yamazaki, M. and Hirano, H. (1999). Primary structure and possible functions of a trypsin inhibitor of Bombyx mori. European Journal of Biochemistry 259, 120126.CrossRefGoogle ScholarPubMed
Liao, Q., Yuan, X., Xiao, H., Liu, C., Lv, Z., Zhao, Y. and Wu, Z. (2011 a). Identifying Schistosoma japonicum excretory/secretory proteins and their interactions with host immune system. PloS ONE 6, e23786.CrossRefGoogle ScholarPubMed
Liao, Q., Yuan, X., Xiao, H., Liu, C., Lv, Z., Zhao, Y. and Wu, Z. (2011 b). Identifying Schistosoma japonicum excretory/secretory proteins and their interactions with host immune system. PloS ONE 6, e23786.CrossRefGoogle ScholarPubMed
Liu, F., Cui, S. J., Hu, W., Feng, Z., Wang, Z. Q. and Han, Z. G. (2009). Excretory/secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum . Molecular & Cellular Proteomics 8, 12361251.CrossRefGoogle ScholarPubMed
Lynch, J. and Shariat-Madar, Z. (2012). Physiological effects of the plasma kallikrein-kinin system: roles of the Blood Coagulation Factor XII (Hageman Factor). Journal of Clinical Toxicology 2, e105.Google Scholar
Majorek, K. A., Porebski, P. J., Dayal, A., Zimmerman, M. D., Jablonska, K., Stewart, A. J., Chruszcz, M. and Minor, W. (2012). Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular Immunology 52, 174182.CrossRefGoogle ScholarPubMed
Marder, V. J., Aird, W. C., Bennett, J. S., Schulman, S. and White, G. C. (2012). Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Lippincott Williams & Wilkins, Philadelphia, PA.Google Scholar
Mebius, M. M., van Genderen, P. J. J., Urbanus, R. T., Tielens, A. G. M., de Groot, P. G. and van Hellemond, J. J. (2013). Interference with the host haemostatic system by schistosomes. PLoS pathogens 9, e1003781.CrossRefGoogle ScholarPubMed
Moreau, M. E., Garbacki, N., Molinaro, G., Brown, N. J., Marceau, F. and Adam, A. (2005). The kallikrein-kinin system: current and future pharmacological targets. Journal of Pharmacological Sciences 99, 638.CrossRefGoogle ScholarPubMed
Mulvenna, J., Moertel, L., Jones, M. K., Nawaratna, S., Lovas, E. M., Gobert, G. N., Colgrave, M., Jones, A., Loukas, A. and McManus, D. P. (2010). Exposed proteins of the Schistosoma japonicum tegument. International Journal of Parasitology 40, 543554.CrossRefGoogle ScholarPubMed
Omran, S. A., el-Bassiouni, N. E., Hussein, N. A., Akl, M. M., Hussein, A. T. and Mohamed, A. A. (1995). Disseminated intravascular coagulation in endemic hepatosplenic schistosomiasis. Haemostasis 25, 218228.Google ScholarPubMed
Petersen, T. N., Brunak, S., von Heijne, G. and Nielsen, H. (2011). SignalP 4·0: discriminating signal peptides from transmembrane regions. Nature Methods 8, 785786.CrossRefGoogle ScholarPubMed
Rabouille, C., Malhotra, V. and Nickel, W. (2012). Diversity in unconventional protein secretion. Journal of cell science 125, 5251.CrossRefGoogle ScholarPubMed
Ranasinghe, S. and McManus, D. P. (2013). Structure and function of invertebrate Kunitz serine protease inhibitors. Developmental & Comparative Immunology 39, 219227.CrossRefGoogle ScholarPubMed
Rao, K. V. N. and Ramaswamy, K. (2000). Cloning and expression of a gene encoding Sm16, an anti-inflammatory protein from Schistosoma mansoni . Molecular and Biochemical Parasitology 108, 101108. doi: http://dx.doi.org/10.1016/S0166-6851(00)00209-7.CrossRefGoogle ScholarPubMed
Renne, T., Schmaier, A. H., Nickel, K. F., Blomback, M. and Maas, C. (2012). In vivo roles of factor XII. Blood 120, 42964303.CrossRefGoogle ScholarPubMed
Salameh, M. A., Robinson, J. L., Navaneetham, D., Sinha, D., Madden, B. J., Walsh, P. N. and Radisky, E. S. (2010). The amyloid precursor protein/protease nexin 2 Kunitz inhibitor domain is a highly specific substrate of mesotrypsin. Journal of Biological Chemistry 285, 19391949.CrossRefGoogle ScholarPubMed
Salameh, M. d. A. and Radisky, E. S. (2013). Biochemical and structural insights into mesotrypsin: an unusual human trypsin. International journal of biochemistry and molecular biology 4, 129.Google ScholarPubMed
Salmanizadeh, H., Babaie, M. and Zolfagharian, H. (2013). In vivo evaluation of homeostatic effects of Echis carinatus snake venom in Iran. Journal of Venomous Animals and Toxins Including Tropical Diseases 19, 3.CrossRefGoogle ScholarPubMed
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J. D. and Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular and Systems Biology 7, 539. doi: http://www.nature.com/msb/journal/v7/n1/suppinfo/msb201175_S1.html.CrossRefGoogle ScholarPubMed
Sigrist, C. J., de Castro, E., Cerutti, L., Cuche, B. A., Hulo, N., Bridge, A., Bougueleret, L. and Xenarios, I. (2013). New and continuing developments at PROSITE. Nucleic Acids Research 41, D344D347.CrossRefGoogle ScholarPubMed
Swain, M. T., Larkin, D. M., Caffrey, C. R., Davies, S. J., Loukas, A., Skelly, P. J. and Hoffmann, K. F. (2011 a). Schistosoma comparative genomics: integrating genome structure, parasite biology and anthelmintic discovery. Trends in Parasitology 27, 555564. doi: http://dx.doi.org/10.1016/j.pt.2011.09.003.CrossRefGoogle ScholarPubMed
Swain, M. T., Larkin, D. M., Caffrey, C. R., Davies, S. J., Loukas, A., Skelly, P. J. and Hoffmann, K. F. (2011 b). Schistosoma comparative genomics: integrating genome structure, parasite biology and anthelmintic discovery. Trends in Parasitology 27, 555564.CrossRefGoogle ScholarPubMed
Tanabe, M. (2003). Haemostatic abnormalities in hepatosplenic Schistosomiasis mansoni . Parasitology International 52, 351359.CrossRefGoogle ScholarPubMed
Tsang, V. C. and Damian, R. T. (1977). Demonstration and mode of action of an inhibitor for activated Hageman factor (factor XIIa) of the intrinsic blood coagulation pathway from Schistosoma mansoni . Blood 49, 619633.CrossRefGoogle ScholarPubMed
Wachtfogel, Y. T., Kucich, U., Hack, C. E., Gluszko, P., Niewiarowski, S., Colman, R. W. and Edmunds, L. H. Jr (1993). Aprotinin inhibits the contact, neutrophil, and platelet activation systems during simulated extracorporeal perfusion. The Journal of Thoracic and Cardiovascular Surgery 106, 19.CrossRefGoogle ScholarPubMed
Wass, M. N., Kelley, L. A. and Sternberg, M. J. (2010). 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Research 38, W469473.CrossRefGoogle ScholarPubMed
Wolberg, A. S., Aleman, M. M., Leiderman, K. and Machlus, K. R. (2012). Procoagulant activity in hemostasis and thrombosis: Virchow's triad revisited. Anesthesia and analgesia 114, 275285.CrossRefGoogle ScholarPubMed
Wu, Y. P., Lenting, P. J., Tielens, A. G., de Groot, P. G. and van Hellemond, J. J. (2007). Differential platelet adhesion to distinct life-cycle stages of the parasitic helminth Schistosoma mansoni . Journal of Thrombosis and Haemostasis 5, 21462148.CrossRefGoogle ScholarPubMed
Yan Zhou, H. Z., Chen, Y., Zhang, L., Wang, K., Guo, J. (2009). The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460, 345351. doi: http://www.nature.com/nature/journal/v460/n7253/suppinfo/nature08140_S1.html.Google Scholar
Zhang, M., Hong, Y., Han, Y., Han, H., Peng, J., Qiu, C., Yang, J., Lu, K., Fu, Z. and Lin, J. (2013). Proteomic analysis of tegument-exposed proteins of female and male Schistosoma japonicum worms. Journal of Proteome Research 12, 52605270.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ranasinghe supplementary material

Table S1

Download Ranasinghe supplementary material(File)
File 14.1 KB