Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T02:38:33.509Z Has data issue: false hasContentIssue false

Neutrophils, apoptosis and phagocytic clearance: an innate sequence of cellular responses regulating intramacrophagic parasite infections

Published online by Cambridge University Press:  03 October 2006

F. L. RIBEIRO-GOMES
Affiliation:
Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-900, Brazil
M. T. SILVA
Affiliation:
Institute for Molecular and Cell Biology, Porto, 4150-180, Portugal
G. A. DOSREIS
Affiliation:
Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-900, Brazil

Abstract

In complex organisms, apoptosis is a constitutive cell death process that is involved in physiological regulation of cell numbers and that can also be induced in the course of inflammatory and immune responses. Neutrophils are among the first cells recruited during inflammation. Neutrophils constitutively die by apoptosis at inflamed sites, and are ingested by macrophages. Recent studies investigated how phagocytic clearance of senescent neutrophils influences the survival of intracellular protozoan parasites that have been phagocytosed by, or have invaded phagocytes. The results indicate that neutrophil clearance plays an unexpected role in regulation of intramacrophagic protozoan parasite infection.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, D. O. and Hamilton, T. A. ( 1984). The cell biology of macrophage activation. Annual Review of Immunology 2, 283318.CrossRefGoogle Scholar
Afonso, A., Silva, J., Lousada, S., Ellis, A. E. and Silva, M. T. ( 1998). Uptake of neutrophils and neutrophilic components by macrophages in the inflamed peritoneal cavity of rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology 8, 319338.CrossRefGoogle Scholar
Appelberg, R., Castro, A. G., Gomes, S., Pedrosa, J. and Silva, M. T. ( 1995). Susceptibility of beige mice to Mycobacterium avium: role of neutrophils. Infection and Immunity 63, 33813387.Google Scholar
Binder, R. J., Vanter, R. and Srivastava, P. ( 2004). The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64, 442451.CrossRefGoogle Scholar
Cailhier, J. F., Partolina, M., Vuthoori, S., Wu, S., Ko, K., Watson, S., Savill, J., Hughes, J. and Lang, R. A. ( 2005). Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. Journal of Immunology 174, 23362342.CrossRefGoogle Scholar
Chen, L., Watanabe, T., Watanabe, H. and Sendo, F. ( 2001). Neutrophil depletion exacerbates experimental Chagas' disease in BALB/c, but protects C57BL/6 mice through modulating the T1/T2 dichotomy in different directions. European Journal of Immunology 31, 265275.3.0.CO;2-L>CrossRefGoogle Scholar
Chung, S., Gumienny, T. L., Hengartner, M. O. and Driscoll, M. ( 2000). A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nature Cell Biology 2, 931937.CrossRefGoogle Scholar
Cvetanovic, M. and Ucker, D. S. ( 2004). Innate immune discrimination of apoptotic cells: repression of proinflammatory macrophage transcription is coupled directly to specific recognition. Journal of Immunology 172, 880889.CrossRefGoogle Scholar
De Freitas Balanco, J. M., Moreira, M. E., Bonomo, A., Bozza, P. T., Amarante-Mendes, G., Pirmez, C. and Barcinski, M. A. ( 2001). Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity. Current Biology 11, 18701873.CrossRefGoogle Scholar
Devaney, J. M., Greene, C. M., Taggart, C. C., Carroll, T. P., O'Neill, S. J. and McElvaney, N. G. ( 2003). Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4. FEBS Letters 544, 129132.CrossRefGoogle Scholar
Dockrell, D. H. ( 2003). The multiple roles of Fas ligand in the pathogenesis of infectious diseases. Clinical Microbiology and Infection 9, 766779.CrossRefGoogle Scholar
DosReis, G. A. and Barcinski, M. A. ( 2001). Apoptosis and parasitism: from the parasite to the host immune response. Advances in Parasitology 49, 133161.CrossRefGoogle Scholar
Eda, S., Yamanaka, M. and Beppu, M. ( 2004). Carbohydrate mediated phagocytic recognition of early apoptotic cells undergoing transient capping of CD43 glycoprotein. Journal of Biological Chemistry 279, 59675974.CrossRefGoogle Scholar
Fadok, V. A., Bratton, D. L., Guthrie, L. and Henson, P. M. ( 2001). Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. Journal of Immunology 166, 68476854.CrossRefGoogle Scholar
Fadok, V. A., Bratton, D. L., Konowal, A., Freed, P. W., Westcott, J. Y. and Henson, P. M. ( 1998). Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE-2 and PAF. Journal of Clinical Investigation 101, 890898.CrossRefGoogle Scholar
Freire-De-Lima, C. G., Nascimento, D. O., Soares, M. B. P., Bozza, P. T., Castro-Faria-Neto, H. C., De Mello, F. G., Dosreis, G. A. and Lopes, M. F. ( 2000). Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 403, 199203.CrossRefGoogle Scholar
Gilbreath, M. J., Nacy, C. A., Hoover, D. L., Alving, C. R., Swartz, G. M. and Meltzer, M. S. ( 1985). Macrophage activation for microbicidal activity against Leishmania major: inhibition of lymphokine activation by phosphatidylcholine-phosphatidylserine liposomes. Journal of Immunology 134, 34203425.Google Scholar
Golpon, H. A., Fadok, V. A., Taraseviciene-Stewart, L., Scerbavicius, R., Sauer, C., Welte, T., Henson, P. M. and Voelkel, N. F. ( 2004). Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. The FASEB Journal 18, 17161718.CrossRefGoogle Scholar
Gordon, S. ( 2003). Alternative activation of macrophages. Nature Reviews Immunology 3, 2335.CrossRefGoogle Scholar
Gregory, C. D. and Devitt, A. ( 2004). The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically? Immunology 113, 114.Google Scholar
Gregory, S. H. and Wing, E. J. ( 2002). Neutrophil-Kupffer cell interaction: a critical component of host defenses to systemic bacterial infections. Journal of Leukocyte Biology 72, 239248.Google Scholar
Haslett, C. ( 1999). Granulocyte apoptosis and its role in the resolution and control of lung inflammation. American Journal of Respiratory and Critical Care Medicine 160, S5S11.CrossRefGoogle Scholar
Henson, P. M. and Johnston, R. B. Jr. ( 1987). Tissue injury in inflammation. Oxidants, proteinases, and cationic proteins. Journal of Clinical Investigation 79, 669674.Google Scholar
Hirt, U. A. and Leist, M. ( 2003). Rapid, noninflammatory and PS-dependent phagocytic clearance of necrotic cells. Cell Death and Differentiation 10, 11561164.CrossRefGoogle Scholar
Hohlbaum, A. M., Gregory, M. S., Ju, S. T. and Marshak-Rothstein, A. ( 2001). Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. Journal of Immunology 167, 62176224.CrossRefGoogle Scholar
Hu, B., Punturieri, A., Todt, J., Sonstein, J., Polak, T. and Curtis, J. L. ( 2002). Recognition and phagocytosis of apoptotic T cells by resident murine tissue macrophages require multiple signal transduction events. Journal of Leukocyte Biology 71, 881889.Google Scholar
Iniesta, V., Gomez-Nieto, L. C. and Corraliza, I. ( 2001). The inhibition of arginase by N-ω-hydroxy-L-arginine controls the growth of Leishmania inside macrophages. Journal of Experimental Medicine 193, 777784.CrossRefGoogle Scholar
Kriese, R. R. J. and White, K. ( 2002). Engulfment mechanism of apoptotic cells. Current Opinion in Cell Biology 14, 734738.CrossRefGoogle Scholar
Larsson, M., Fonteneau, J. F. and Bhardwaj, N. ( 2001). Dendritic cells resurrect antigens from dead cells. Trends in Immunology 22, 141148.CrossRefGoogle Scholar
Li, M., Carpio, D. F., Zheng, Y., Bruzzo, P., Singh, V., Ouaaz, F., Medzhitov, R. M. and Beg, A. A. ( 2001). An essential role of the NF-kB/toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. Journal of Immunology 166, 71287135.CrossRefGoogle Scholar
Lima, M. F. and Kierszenbaum, F. ( 1985). Lactoferrin effects on phagocytic cell function. I. Increased uptake and killing of an intracellular parasite by murine macrophages and human monocytes. Journal of Immunology 134, 41764183.Google Scholar
Lima, R. G., Van Weyenbergh, J., Saraiva, E. M., Barral-Netto, M., Galvao-Castro, B. and Bou-Habib, D. C. ( 2002). The replication of human immunodeficiency virus type 1 in macrophages is enhanced after phagocytosis of apoptotic cells. Journal of Infectious Diseases 185, 15611566.CrossRefGoogle Scholar
Lincoln, J. A., Lefkowitz, D. L., Cain, T., Castro, A., Mills, K. C., Lefkowitz, S. S., Moguilevsky, N. and Bollen, A. ( 1995). Exogenous myeloperoxidase enhances bacterial phagocytosis and intracellular killing by macrophages. Infection and Immunity 63, 30423047.Google Scholar
Lipoldova, M., Svobodova, M., Krulova, M., Havelkova, H., Badalov, A. J., Nohynkova, E., Holan, V., Hart, A. A., Volf, P. and Demant, P. ( 2000). Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes and Immunity 1, 200206.CrossRefGoogle Scholar
Lopes, M. F., Veiga, V. F., Santos, A. R., Fonseca, M. E. and Dosreis, G. A. ( 1995). Activation-induced CD4+ T cell death by apoptosis in experimental Chagas' disease. Journal of Immunology 154, 744752.Google Scholar
Lucas, M., Stuart, L. M., Savill, J. and Lacy-Hulbert, A. ( 2003). Apoptotic cells and innate immune stimuli combine to regulate macrophage cytokine secretion. Journal of Immunology 171, 26102615.CrossRefGoogle Scholar
Majumder, S. and Kierszenbaum, F. ( 1993). Inhibition of host cell invasion and intracellular replication of Trypanosoma cruzi by N,N′-bis(benzyl)-substituted polyamine analogs. Antimicrobial Agents and Chemotherapy 37, 22352238.CrossRefGoogle Scholar
Mosser, D. M. ( 2003). The many faces of macrophage activation. Journal of Leukocyte Biology 73, 209212.CrossRefGoogle Scholar
Müller, S., Coombs, G. H. and Walter, R. D. ( 2001). Targeting polyamines of parasitic protozoa in chemotherapy. Trends in Parasitology 17, 242249.CrossRefGoogle Scholar
Nunes, M. P., Andrade, R. M., Lopes, M. F. and DosReis, G. A. ( 1998). Activation-induced T cell death exacerbates Trypanosoma cruzi replication in macrophages cocultured with CD4+ T lymphocytes from infected hosts. Journal of Immunology 160, 13131319.Google Scholar
Odaka, C., Mizuochi, T., Yang, J. and Ding, A. ( 2003). Murine macrophages produce secretory leukocyte protease inhibitor during clearance of apoptotic cells: implications for resolution of the inflammatory response. Journal of Immunology 171, 15071514.CrossRefGoogle Scholar
Pedrosa, J., Saunders, B. M., Appelberg, R., Orme, I. M., Silva, M. T. and Cooper, A. M. ( 2000). Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice. Infection and Immunity 68, 577583.CrossRefGoogle Scholar
Plotz, P. H. ( 2003). The autoantibody repertoire: searching for order. Nature Reviews – Immunology 3, 7378.CrossRefGoogle Scholar
Rainger, G. E., Rowley, A. F. and Nash, G. B. ( 1998). Adhesion-dependent release of elastase from human neutrophils in a normal, flow-based model: specificity of different chemotactic agents. Blood 92, 48194827.Google Scholar
Reddy, S. M., Hsiao, K. H., Abernethy, V. E., Fan, H., Longacre, A., Lieberthal, W., Rauch, J., Koh, J. S. and Levine, J. S. ( 2002). Phagocytosis of apoptotic cells by macrophages induces novel signaling events leading to cytokine-independent survival and inhibition of proliferation: activation of Akt and inhibition of extracellular signal-regulated kinases 1 and 2. Journal of Immunology 169, 702713.CrossRefGoogle Scholar
Ribeiro-Gomes, F. L., Moniz-de-Souza, M. C., Borges, V. M., Nunes, M. P., Mantuano-Barradas, M., D'Ávila, H., Bozza, P. T., Calich, V. L. and DosReis, G. A. ( 2005). Turnover of neutrophils mediated by Fas ligand drives Leishmania infection. Journal of Infectious Diseases 192, 11271134.CrossRefGoogle Scholar
Ribeiro-Gomes, F. L., Otero, A. C., Gomes, N. A., Moniz-de-Souza, M. C., Cysne-Finkelstein, L., Arnholdt, A. C., Calich, V. L., Coutinho, S. G., Lopes, M. F. and DosReis, G. A. ( 2004). Macrophage interactions with neutrophils regulate Leishmania major infection. Journal of Immunology 172, 44544462.CrossRefGoogle Scholar
Savill, J., Dransfield, I., Gregory, C. and Haslett, C. ( 2002). A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Reviews – Immunology 2, 965975.CrossRefGoogle Scholar
Savill, J. S., Wyllie, A. U., Henson, J. E., Walport, M. J., Henson, P. M. and Haslett, C. ( 1989). Macrophage phagocytosis of aging neutrophils in inflammation; programmed cell death in the neutrophil leads to its recognition by macrophages. Journal of Clinical Investigation 83, 865875.CrossRefGoogle Scholar
Silva, M. T., Silva, M. N. and Appelberg, R. ( 1989). Neutrophil-macrophage cooperation in the host defence against mycobacterial infections. Microbial Pathogenesis 6, 369380.CrossRefGoogle Scholar
Stuart, L. M., Lucas, M., Simpson, C., Lamb, J., Savill, J. and Lacy-Hulbert, A. ( 2002). Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. Journal of Immunology 168, 16271635.CrossRefGoogle Scholar
Tacchini-Cottier, F., Zweifel, C., Belkaid, Y., Mukankundiye, C., Vasei, M., Launois, P., Milon, G. and Louis, J. A. ( 2000). An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. Journal of Immunology 165, 26282636.CrossRefGoogle Scholar
Todt, J. C., Hu, B. and Curtis, J. L. ( 2004). The receptor tyrosine kinase MerTK activates phospholipase C gamma2 during recognition of apoptotic thymocytes by murine macrophages. Journal of Leukocyte Biology 75, 705713.CrossRefGoogle Scholar
Urban, B. C., Willcox, N. and Roberts, D. J. ( 2001). A role for CD36 in the regulation of dendritic cell function. Proceedings of the National Academy of Sciences, USA 98, 87508755.CrossRefGoogle Scholar
Van Zandbergen, G., Klinger, M., Mueller, A., Dannenberg, S., Gebert, A., Solbach, W. and Laskay, T. ( 2004). Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. Journal of Immunology 173, 65216525.CrossRefGoogle Scholar
Voll, R. E., Herrmann, M., Roth, E. A., Stach, C., Kalden, J. R. and Girkontaite, I. ( 1997). Immunosuppressive effects of apoptotic cells. Nature 390, 350351.CrossRefGoogle Scholar
Zamboni, D. S. and Rabinovitch, M. ( 2004). Phagocytosis of apoptotic cells increases the susceptibility of macrophages to infection with Coxiella burnetii phase II through down-modulation of nitric oxide production. Infection and Immunity 72, 20752080.CrossRefGoogle Scholar
Zheng, L., He, M., Long, M., Blomgran, R. and Stendahl, O. ( 2004). Pathogen-induced apoptotic neutrophils express heat shock proteins and elicit activation of human macrophages. Journal of Immunology 173, 63196326.CrossRefGoogle Scholar
Zuniga, E., Motran, C. C., Montes, C. L., Yagita, H. and Gruppi, A. ( 2002). Trypanosoma cruzi infection selectively renders parasite-specific IgG+ B lymphocytes susceptible to Fas/Fas ligand-mediated fratricide. Journal of Immunology 168, 39653973.CrossRefGoogle Scholar