Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T12:20:01.041Z Has data issue: false hasContentIssue false

NcGRA2 as a molecular target to assess the parasiticidal activity of toltrazuril against Neospora caninum

Published online by Cambridge University Press:  13 June 2008

M. STROHBUSCH
Affiliation:
Institute of Parasitology, University of Berne, Laenggass-Strasse 122, CH-3012 Berne, Switzerland
N. MÜLLER
Affiliation:
Institute of Parasitology, University of Berne, Laenggass-Strasse 122, CH-3012 Berne, Switzerland
A. HEMPHILL
Affiliation:
Institute of Parasitology, University of Berne, Laenggass-Strasse 122, CH-3012 Berne, Switzerland
G. GREIF
Affiliation:
Bayer HealthCare AG, Leverkusen, Germany
B. GOTTSTEIN*
Affiliation:
Institute of Parasitology, University of Berne, Laenggass-Strasse 122, CH-3012 Berne, Switzerland
*
*Corresponding author: Institute of Parasitology, Vetsuisse Faculty, University of Bern, Laenggass-Strasse 122, CH-3001 Bern, Switzerland. Tel: +41 31 631 24 18. E-mail: [email protected]

Summary

The treatment of Neospora caninum infection in the bovine host is still at an experimental stage. In contrast to the in vivo situation, a wide range of compounds have been intensively investigated in cell-culture-based assays. Tools to demonstrate efficacy of treatment have remained conventional including morphological and cell biological criteria. In this work, we present a molecular assay that allows the distinction between live and dead parasites. Live parasites can be detected by measuring the mRNA level of specific genes, making use of the specific mRNA available in live cells. The NcGra2 gene of N. caninum, which is known to be expressed in both tachyzoites and bradyzoites, was used to establish a quantitative real-time RT-PCR, for monitoring parasite viability. Validation of the system in vitro was achieved using Neospora-infected cells that had been treated for 2–20 days with 30 μg/ml toltrazuril. NcGRA2-RT-real time PCR demonstrated that a 10-day toltrazuril-treatment exerted parasitostatic activity, as assessed by the presence of NcGRA2-transcripts, whereas after a 14-day treatment period no NcGRA2-transcripts were detected, showing that the parasites were no longer viable. Concurrently, extended culture for a period of 4 weeks in the absence of the drug following the 14-day toltrazuril treatment did not lead to further parasite proliferation, confirming the parasiticidal effect of the treatment. This assay has the potential to be widely used in the development of novel drugs against N. caninum, with a view to distinguishing between parasiticidal and parasitostatic efficacy of given compounds.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ammann, P., Waldvogel, A., Breyer, I., Esposito, M., Müller, N. and Gottstein, B. (2004). The role of B- and T-cell immunity in toltrazuril-treated C57BL/6 WT, microMT and nude mice experimentally infected with Neospora caninum. Parasitology Research 93, 178187.Google Scholar
Andrianarivo, A. G., Rowe, J. D., Barr, B. C., Anderson, M. L., Packham, A. E., Sverlow, K. W., Choromanski, L., Loui, C., Grace, A. and Conrad, P. A. (2000). A POLYGEN-adjuvanted killed Neospora caninum tachyzoite preparation failed to prevent foetal infection in pregnant cattle following i.v./i.m. experimental tachyzoite challenge. International Journal for Parasitology 30, 985990.CrossRefGoogle ScholarPubMed
Darius, A. K., Mehlhorn, H. and Heydorn, A. O. (2004 a). Effects of toltrazuril and ponazuril on Hammondia heydorni (syn. Neospora caninum) infections in mice. Parasitology Research 92, 520522.Google Scholar
Darius, A. K., Mehlhorn, H. and Heydorn, A. O. (2004 b). Effects of toltrazuril and ponazuril on the fine structure and multiplication of tachyzoites of the NC-1 strain of Neospora caninum (a synonym of Hammondia heydorni) in cell cultures. Parasitology Research 92, 453458.Google Scholar
Dubey, J. P. (2003). Review of Neospora caninum and neosporosis in animals. Korean Journal for Parasitology 41, 116.Google Scholar
Dubey, J. P., Schares, G. and Ortega-Mora, L. M. (2007). Epidemiology and control of neosporosis and Neospora caninum. Clinical Microbiology Reviews 20, 323367.CrossRefGoogle ScholarPubMed
Ellis, J. T., Ryce, C., Atkinson, R., Balu, S., Jones, P. and Harper, P. A. (2000). Isolation, characterization and expression of a GRA2 homologue from Neospora caninum. Parasitology 120, 383390.Google Scholar
Esposito, M., Stettler, R., Moores, S. L., Pidathala, C., Müller, N., Stachulski, A., Berry, N. G., Rossignol, J. F. and Hemphill, A. (2005). In vitro efficacies of nitazoxanide and other thiazolides against Neospora caninum tachyzoites reveal antiparasitic activity independent of the nitro group. Antimicrobial Agents and Chemotherapy 49, 37153723.Google Scholar
Gottstein, B., Eperon, S., Dai, W. J., Cannas, A., Hemphill, A. and Greif, G. (2001). Efficacy of toltrazuril and ponazuril against experimental Neospora caninum infection in mice. Parasitology Research 87, 4348.Google Scholar
Gottstein, B., Razmi, G. R., Ammann, P., Sager, H. and Müller, N. (2005). Toltrazuril treatment to control diaplacental Neospora caninum transmission in experimentally infected pregnant mice. Parasitology 130, 4148.Google Scholar
Haberkorn, A. (1996). Chemotherapy of human and animal coccidioses: state and perspectives. Parasitology Research 82, 193199.CrossRefGoogle Scholar
Haerdi, C., Haessig, M., Sager, H., Greif, G., Staubli, D. and Gottstein, B. (2006). Humoral immune reaction of newborn calves congenitally infected with Neospora caninum and experimentally treated with toltrazuril. Parasitology Research 99, 534540.Google Scholar
Häsler, B., Regula, G., Stark, K. D., Sager, H., Gottstein, B. and Reist, M. (2006 a). Financial analysis of various strategies for the control of Neospora caninum in dairy cattle in Switzerland. Preventive Veterinary Medicine 77, 230253.Google Scholar
Häsler, B., Stark, K. D., Sager, H., Gottstein, B. and Reist, M. (2006 b). Simulating the impact of four control strategies on the population dynamics of Neospora caninum infection in Swiss dairy cattle. Preventive Veterinary Medicine 77, 254283.Google Scholar
Hemphill, A. and Gottstein, B. (2000). A European perspective on Neospora caninum. International Journal for Parasitology 30, 877924.Google Scholar
Hemphill, A., Gottstein, B. and Kaufmann, H. (1996). Adhesion and invasion of bovine endothelial cells by Neospora caninum. Parasitology 112, 183197.CrossRefGoogle ScholarPubMed
Innes, E. A., Andrianarivo, A. G., Bjorkman, C., Williams, D. J. and Conrad, P. A. (2002). Immune responses to Neospora caninum and prospects for vaccination. Trends in Parasitology 18, 497504.CrossRefGoogle ScholarPubMed
Innes, E. A. and Vermeulen, A. N. (2006). Vaccination as a control strategy against the coccidial parasites Eimeria, Toxoplasma and Neospora. Parasitology 133 (Suppl.), S145S168.CrossRefGoogle ScholarPubMed
Kritzner, S., Sager, H., Blum, J., Krebber, R., Greif, G. and Gottstein, B. (2002). An explorative study to assess the efficacy of toltrazuril-sulfone (ponazuril) in calves experimentally infected with Neospora caninum. Annals of Clinical Microbiology and Antimicrobobials 1, 4.Google Scholar
Lindsay, D. S. and Dubey, J. P. (1989). Evaluation of anti-coccidial drugs' inhibition of Neospora caninum development in cell cultures. Journal for Parasitology 75, 990992.Google Scholar
Lindsay, D. S., Rippey, N. S., Cole, R. A., Parsons, L. C., Dubey, J. P., Tidwell, R. R. and Blagburn, B. L. (1994). Examination of the activities of 43 chemotherapeutic agents against Neospora caninum tachyzoites in cultured cells. American Journal of Veterinary Research 55, 976981.Google Scholar
Manger, I. D., Hehl, A., Parmley, S., Sibley, L. D., Marra, M., Hillier, L., Waterston, R. and Boothroyd, J. C. (1998). Expressed sequence tag analysis of the bradyzoite stage of Toxoplasma gondii: identification of developmentally regulated genes. Infection and Immunity 66, 16321637.CrossRefGoogle ScholarPubMed
Mercier, C., Lecordier, L., Darcy, F., Deslee, D., Murray, A., Tourvieille, B., Maes, P., Capron, A. and Cesbron-Delauw, M. F. (1993). Molecular characterization of a dense granule antigen (Gra 2) associated with the network of the parasitophorous vacuole in Toxoplasma gondii. Molecular and Biochemical Parasitology 58, 7182.Google Scholar
Müller, N., Vonlaufen, N., Gianinazzi, C., Leib, S. L. and Hemphill, A. (2002). Application of real-time fluorescent PCR for quantitative assessment of Neospora caninum infections in organotypic slice cultures of rat central nervous system tissue. Journal of Clinical Microbiology 40, 252255.CrossRefGoogle ScholarPubMed
Müller, N., Zimmermann, V., Forster, U., Bienz, M., Gottstein, B. and Welle, M. (2003). PCR-based detection of canine Leishmania infections in formalin-fixed and paraffin-embedded skin biopsies: elaboration of a protocol for quality assessment of the diagnostic amplification reaction. Veterinary Parasitology 114, 223229.CrossRefGoogle ScholarPubMed
Müller, N., Zimmermann, V., Hentrich, B. and Gottstein, B. (1996). Diagnosis of Neospora caninum and Toxoplasma gondii infection by PCR and DNA hybridization immunoassay. Journal of Clinical Microbiology 34, 28502852.Google Scholar
Vonlaufen, N., Guetg, N., Naguleswaran, A., Müller, N., Bjorkman, C., Schares, G., Von Blumroeder, D., Ellis, J. and Hemphill, A. (2004). In vitro induction of Neospora caninum bradyzoites in vero cells reveals differential antigen expression, localization, and host-cell recognition of tachyzoites and bradyzoites. Infection and Immunity 72, 576583.Google Scholar