Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T14:32:19.995Z Has data issue: false hasContentIssue false

Molecular cloning and characterization of Echinostoma caproni heat shock protein-70 and differential expression in the parasite derived from low- and high-compatible hosts

Published online by Cambridge University Press:  28 August 2008

M. HIGÓN
Affiliation:
Departamento de Biología Celular y Parasitología, Facultat de Farmàcia, Universitat de Valencia, Av. V.A. Estellés, s/n, 46100 Burjassot, Valencia, Spain
C. MONTEAGUDO
Affiliation:
Departamento de Patología, Facultat de Medicina, Av. Blasco Ibañez, 17, Valencia, Spain
B. FRIED
Affiliation:
Department of Biology, Lafayette College, Easton, Pennsylvania 18042, USA
J. G. ESTEBAN
Affiliation:
Departamento de Biología Celular y Parasitología, Facultat de Farmàcia, Universitat de Valencia, Av. V.A. Estellés, s/n, 46100 Burjassot, Valencia, Spain
R. TOLEDO
Affiliation:
Departamento de Biología Celular y Parasitología, Facultat de Farmàcia, Universitat de Valencia, Av. V.A. Estellés, s/n, 46100 Burjassot, Valencia, Spain
A. MARCILLA*
Affiliation:
Departamento de Biología Celular y Parasitología, Facultat de Farmàcia, Universitat de Valencia, Av. V.A. Estellés, s/n, 46100 Burjassot, Valencia, Spain
*
*Corresponding author: Departamento de Biología Celular y Parasitología, Facultat de Farmàcia, Universitat de Valencia, Av. V.A. Estellés, s/n, 46100 Burjassot, Valencia, Spain. Tel: +34 963544491. Fax: +34 963544769. E-mail: [email protected]

Summary

We cloned and expressed Echinostoma caproni HSP70 in Escherichia coli. This molecule presents an open reading frame (ORF) of 655 amino acids, and a theoretical molecular weight of 71 kDa. E. caproni HSP70 protein showed a high homology to other helminth molecules, major differences being located in the C-terminal region of the molecule, with a hydrophobic portion. Studies of protein and messenger RNA (mRNA) expression revealed a distinct pattern, depending on the host (low- or high-compatible). Specific polyclonal antisera raised against the recombinant protein expressed in Escherichia coli demonstrated its selective presence in excretory/secretory products (ESP) of adult parasites obtained from high-compatible hosts. Immunological studies showed clearly the association of HSP70 with the parasite surface and other structures, including eggs.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Miller, W. and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 33893402.CrossRefGoogle ScholarPubMed
Anuracpreeda, P., Wanichanon, C., Chaithirayanon, K., Preyavichyapugdee, N. and Sobhon, P. (2006). Distribution of 28·5 kDa antigen in the tegument of adult Fasciola gigantica. Acta Tropica 100, 3140.CrossRefGoogle ScholarPubMed
Arts, M. J., Schill, R. O., Knigge, T., Eckwert, H., Kammenga, J. E. and Köhler, H. R. (2004). Stress proteins (hsp70, hsp60) induced in isopods and nematodes by field exposure to metals in a gradient near Avonmouth, UK. Ecotoxicology 13, 739755.CrossRefGoogle Scholar
Bernal, D., Carpena, I., Espert, A. M., De la Rubia, J. E., Esteban, J. G., Toledo, R. and Marcilla, A. (2006). Identification of proteins in excretory/secretory extracts of Echinostoma friedi (Trematoda) from chronic and acute infections. Proteomics 6, 28352843.CrossRefGoogle ScholarPubMed
Borchiellini, C., Boury-Esnault, N., Vacelet, J. and Le Parco, Y. (1998). Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of Metazoa and specific phylogenetic relationships between animals and fungi. Molecular Biology and Evolution 15, 647655.CrossRefGoogle ScholarPubMed
Cass, C. L., Johnson, J. R., Califf, L. L., Xub, T., Hernandez, H. J., Stadecker, M. J., Yates, J. R. and Williams, D. L. (2007). Proteomic analysis of Schistosoma mansoni egg secretions. Molecular and Biochemical Parasitology 155, 8493.CrossRefGoogle ScholarPubMed
Colebrook, A. L. and Lightowlers, M. W. (1997). Serological reactivity to heat shock protein 70 in patients with hydatidic disease. Parasite Immunology 19, 4146.CrossRefGoogle Scholar
Demand, J., Lüders, J. and Höfeld, J. (1998). The carboxy terminal domains of Hsc 70 provides binding sites for a distinct set of chaperone cofactors. Molecular and Cellular Biology 18, 20232028.CrossRefGoogle Scholar
Engman, D. M., Dragon, E. A. and Donelson, J. E. (1990). Human humoral immunity to HSP70 during Trypanosoma cruzi infection. Journal of Immunology 144, 39873991.CrossRefGoogle ScholarPubMed
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M., Appel, R. and Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook (ed. Walker, J. M.), pp. 571608. Humana Press, Totowa, New Jersey, USA.CrossRefGoogle Scholar
Hedstrom, R., Culpepper, J., Schinski, V., Arabian, N. and Newport, G. (1988). Schistosome heat shock proteins are immunologically distinct host like antigen. Molecular and Biochemical Parasitology 29, 275282.CrossRefGoogle Scholar
Kanamura, H. Y., Hancock, K., Rodrigues, V. and Damian, R. T. (2002). Schistosoma mansoni heat shock protein 70 elicits an early humoral immune response in S. mansoni infected baboons. Memorias do Instituto Oswaldo Cruz 97, 711716.CrossRefGoogle ScholarPubMed
Kimura, K., Tanaka, N., Nakamura, N., Takano, S. and Ohkuma, S. (2007). Knockdown of mitochondrial heat shock protein 70 promotes progeria-like phenotypes in Caenorhabditis elegans. Journal of Biological Chemistry 282, 59105918.CrossRefGoogle ScholarPubMed
Kumar, N., Zhao, Y., Graves, P., Folgar, J. P., Maloy, L. and Zheng, H. (1990). Human immune response directed against Plasmodium falciparum heat shock related proteins. Infection and Immunity 58, 14081414.CrossRefGoogle ScholarPubMed
Marcilla, A., Rivero-Lezcano, O. M., Agarwal, A. and Robbins, K. C. (1995). Identification of the major tyrosine kinase substrate in signaling complexes formed after engagement of Fc gamma receptors. Journal of Biological Chemistry 270, 91159120.CrossRefGoogle ScholarPubMed
Marcilla, A., Pérez-García, A., Espert, A., Bernal, D., Muñoz-Antolí, C., Esteban, J. G. and Toledo, R. (2007). Echinostoma caproni: identification of enolase in excretory/secretory products, molecular cloning, and functional expression. Experimental Parasitology 117, 5764.CrossRefGoogle ScholarPubMed
Martinez, J., Pérez-Serrano, J., Bernardina, W. E., Rincón, I. and Rodriguez-Caabeiro, F. (2004). Heat shock protein synthesis over time in infective Trichinella spiralis larvae raised in suboptimal culture conditions. Journal of Helminthology 78, 243247.CrossRefGoogle ScholarPubMed
Mayer, M. P. and Bukau, B. (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and Molecular Life Sciences 62, 670684.CrossRefGoogle ScholarPubMed
Miller, C. D. M., Smith, N. C. and Johnson, A. M. (1999). Cytokines, nitric oxide, heat shock proteins and virulence in Toxoplasma. Parasitology Today 15, 418422.CrossRefGoogle ScholarPubMed
Moser, D., Doumbo, O. and Klinkert, M. Q. (1990). The humoral response to heat shock protein 70 in human and murine schistosomiasis. Parasite Immunology 12, 341352.CrossRefGoogle ScholarPubMed
Ortona, E., Marguti, P., Delunardo, F., Vaccari, S., Riganó, R., Profumo, E., Buttari, B., Teggi, A. and Siracusano, A. (2003). Molecular and immunological characterization of the C-terminal region of a new Echinococcus granulosus heat shock protein 70. Parasite Immunology 25, 119126.CrossRefGoogle ScholarPubMed
Polla, B. S. (1991). Heat shock proteins in host-parasite interactions. In Immunoparasitology Today (ed. Ash, C. and Gallagher, J. B.), pp. A38A41. Cambridge Elsevier Trends Journals, Cambridge, UK.Google Scholar
Ravi, V., Kubofcki, J., Bandopathyaya, S., Geetha, M., Narayanan, R. B., Nutman, T. B. and Kaliraj, P. (2004). Wuchereria bancrofti: cloning and characterization of heat shock protein 70 from the human lymphatic filarial parasite. Experimental Parasitology 106, 110.CrossRefGoogle ScholarPubMed
Richman, S. J. and Reese, R. T. (1988). Immunologic modeling of a 75 kDa malarial protein with carrier-free synthetic peptides. Proceedings of the National Academy of Sciences, USA 85, 16621666.CrossRefGoogle ScholarPubMed
Robert, J. (2003). Evolution of heat shock protein and immunity. Developmental and Comparative Immunology 27, 449464.CrossRefGoogle ScholarPubMed
Rothstein, N. M. and Rajan, T. V. (1991). Characterization of an HSP70 gene from the human filarial parasite Brugia malayi (nematoda). Molecular and Biochemical Parasitology 49, 229238.CrossRefGoogle ScholarPubMed
Schmitz, K. A., Hale, T. J., Rajan, T. V. and Yates, J. A. (1996). Localization of paramyosin, myosin, and a heat shock protein 70 in larval an adult Brugia malayi. Journal of Parasitology 82, 367370.CrossRefGoogle Scholar
Scott, J. C. and McManus, D. P. (1999). Identification of novel 70-kDa heat shock protein-encoding cDNA from Schistosoma japonicum. International Journal for Parasitology 29, 437444.CrossRefGoogle ScholarPubMed
Smith, R. E., Spithill, T. W., Pike, R. N., Meeusen, E. N. T. and Piedrafita, D. (2008). Fasciola hepatica and Fasciola gigantica: Cloning and characterization of 70 kDa heat-shock proteins reveals variation in HSP70 gene expression between parasite species recovered from sheep. Experimental Parasitology 118, 536542.CrossRefGoogle ScholarPubMed
Song, K. J., Song, K. H., Na, B. K., Kim, J. H., Kwon, D., Park, S., Pak, J. H., Im, K. I. and Shin, H. J. (2007). Molecular cloning and characterization of a cytosolic heat shock protein 70 from Naegleria fowleri. Parasitology Research 100, 10731089.CrossRefGoogle ScholarPubMed
Sotillo, J., Valero, L., Sánchez del Pino, M. M., Fried, B., Esteban, J. G., Marcilla, A. and Toledo, R. (2008). Identification of antigenic proteins from Echinostoma caproni (Trematoda) recognized by mouse immunoglobulins M, A and G using an immunoproteomic approach. Parasite Immunology 30, 271279.CrossRefGoogle Scholar
Thompson, F. J., Barker, G. L. A., Hughes, L. and Viney, M. E. (2008). Genes important in the parasitic life of the nematode Strongyloides ratti. Molecular and Biochemical Parasitology 158, 112119.CrossRefGoogle ScholarPubMed
Toledo, R., Espert, A., Carpena, I., Muñoz-Antoli, C. and Esteban, J. G. (2003). An experimental study of the reproductive success of Echinostoma friedi (Trematoda: Echinostomatidae) in the golden hamster. Parasitology 126, 433441.CrossRefGoogle ScholarPubMed
Toledo, R., Espert, A., Carpena, I., Muñoz-Antoli, C., Fried, B. and Esteban, J. G. (2004). Comparative development of Echinostoma caproni (Trematoda: Echinostomatidae) adults in experimentally infected hamsters and rats. Parasitology Research 93, 439444.CrossRefGoogle ScholarPubMed
Toledo, R. and Fried, B. (2005). Echinostomes as experimental models in adult parasite-vertebrate host interactions. Trends in Parasitology 21, 251254.CrossRefGoogle Scholar
Toledo, R., Monteagudo, C., Espert, C., Fried, B., Esteban, J. G. and Marcilla, A. (2006). Echinostoma caproni: Intestinal pathology in the golden hamster, a highly compatible host, and the Wistar rat, a less compatible host. Experimental Parasitology 112, 164171.CrossRefGoogle ScholarPubMed
Vayssier, M., Le Guerhier, .F, Fabien, J. F., Philippe, H., Vallet, C., Ortega-Pierres, G., Soule, C., Perret, C., Liu, M., Vega-Lopez, M. and Boireau, P. (1999). Cloning and analysis of a Trichinella britovi gene encoding a cytoplasmic heat shock protein of 72 kDa. Parasitology 119, 8193.CrossRefGoogle Scholar
Supplementary material: File

Higon Supplementary Material

Table.doc

Download Higon Supplementary Material(File)
File 25.1 KB