Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T19:58:01.608Z Has data issue: false hasContentIssue false

Molecular characterization of the surface and cyst fluid components of Taenia crassiceps

Published online by Cambridge University Press:  06 April 2009

S. Lamsam
Affiliation:
Department of Pure and Applied Biology, Imperial College of Science, Technology and Medicine, London SW7 2BB, U.K.
D. P. McManus
Affiliation:
Department of Pure and Applied Biology, Imperial College of Science, Technology and Medicine, London SW7 2BB, U.K. Tropical Health Program, Queensland Institute of Medical Research, Bramston Terrace, Brisbane, Queensland 4006, Australia

Summary

Information relating to the characterization of cestode surface macromolecules is limited. This is especially the case with Taenia crassiceps, a well-recognized model for the study of larval cestodiasis. Here, the protein and glycoprotein composition of the tegumental surface and cyst fluid of the metacestode have been investigated using radio-isotope labelling, immunoprecipitation, SDS–PAGE and lectin affinity chromatography. A restricted number of surface proteins was labelled with the 125I/Iodogen method although the majority were immunogenic; in contrast an array of cyst fluid antigens were labelled. Host serum proteins, including immunoglobulins, were identified on the surface and in the cyst fluid. Some of the 125I-labelled surface proteins, including a 37 kDa molecule, have been shown to be glycoproteins and probably contain-D-mannose and/or D-glucose; there is limited or no N-acetylglucosamine and no terminal galactose present on these components. A 37 kDa surface molecule, possibly the same glycoprotein, was also precipitated by infection sera and this may endorse the theory that highly immunogenic carbohydrates are continuously shed by T. crassiceps as a mechanism for diverting the immune response of the host. Radio-iodinated and biosynthetically labelled T. crassiceps antigens were highly cross-reactive with antibody raised to other cestodes and not one antigen was identified as a possible candidate for use in specific immunodiagnosis of any of the important taeniid infections.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alkarmi, T. O., Alshakarchi, Z. & Behbehani, K. (1988). Echinococcus multilocularis: the non-specific binding of different species of immunoglobulins to alveolar hydatid cysts grown in vivo and in vitro. Parasite Immunology 10, 443–57.CrossRefGoogle ScholarPubMed
Befus, A. D. (1977). Hymenolepis diminuta and H. microstoma: mouse immunoglobulins binding to the tegumental surface. Experimental Parasitology 41, 242–51.CrossRefGoogle Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Analytical Biochemistry 72, 248–54.CrossRefGoogle ScholarPubMed
Chernin, J. (1982). The nature of antigens common to both the metacestodes of Taenia crassiceps and its laboratory host. Journal of Helminthology 56, 339–44.CrossRefGoogle ScholarPubMed
Craig, P. S. (1988). Surface-associated proteins and host IgG on early and late metacestode stages of Taenia pisiformis. Parasite Immunology 10, 243–54.CrossRefGoogle ScholarPubMed
Diaz De Leon, L., Arcos, L. & Willms, K. (1982). The use of cell-free systems for the characterisation of Cysticercus cellulosae antigens. In Cysticercosis: Present State of Knowledge and Perspectives (ed. Flisser, A., Willms, K., Laclette, J. P., Larralde, C., Ridaura, C. & Beltran, F.), pp. 465–77. New York and London: Academic Press.Google Scholar
Esch, G. W. & Kuhn, R. E. (1971). The uptake of 14C-Chlorella protein by larval Taenia crassiceps (Cestoda). Parasitology 62, 27–9.CrossRefGoogle ScholarPubMed
Flisser, A. (1988). Neurocysticercosis in Mexico. Parasitology Today 4, 131–7.CrossRefGoogle ScholarPubMed
Goldstein, I. J. & Hayes, C. E. (1978). The lectins: carbohydrate binding proteins of plants and animals. In Advances in Carbohydrate Chemistry and Biochemistry, vol. 35 (ed. Tipson, R. S. & Horton, D.), pp. 127340. New York, San Francisco and London: Academic Press.Google Scholar
Hames, B. D. & Rickwood, D. (1981). Gel Electrophoresis of Proteins: A Practical Approach. Oxford: IRL Press.Google Scholar
Hammerberg, B., Dangler, C. & Williams, J. F. (1980). Taenia taeniaeformis: chemical composition of parasite factors affecting coagulation and complement cascades. Journal of Parasitology 66, 569–76.CrossRefGoogle ScholarPubMed
Harrison, L. J. S., Joshua, G. W. P., Wright, S. H. & Parkhouse, R. M. E. (1989). Specific detection of viable cysticerci in Taenia saginata cysticercosis. Parasite Immunology 11, 351–70.CrossRefGoogle ScholarPubMed
Harrison, L. J. S. & Parkhouse, R. M. E. (1986). Passive protection against Taenia saginata infection in cattle by a mouse monoclonal antibody reactive with the surface of the invasive oncosphere. Parasite Immunology 8, 319–32.CrossRefGoogle ScholarPubMed
Haynes, W. D. G. & Taylor, A. E. R. (1968). Studies on the absorption of amino acids by larval tapeworms (Cyclophyllidea: Taenia crassiceps). Parasitology 58, 4759.CrossRefGoogle ScholarPubMed
Hughes, R. C. (1975). The complex carbohydrates of mammalian cell surfaces and their biological roles. In Essays in Biochemistry (ed. Campbell, P. N. & Greville, G. D.) 11, 136. New York: Academic Press.Google Scholar
Hustead, S. T. & Williams, J. F. (1977). Permeability studies on taeniid metacestodes. 1. Uptake of proteins by larval stages of Taenia taeniaeformis, T. crassiceps, and Echinococcus granulosus. Journal of Parasitology 63, 314–21.CrossRefGoogle Scholar
Knowles, W. J. & Oaks, J. A. (1979). Isolation and partial biochemical characterisation of the brush border plasma membrane from the cestode, Hymenolepis diminuta. Journal of Parasitology 65, 715–31.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Lamsam, S. (1988). Immunological and Molecular Characterisation of Taenia crassiceps. Ph.D. thesis, University of London.Google Scholar
Lumsden, R. D. (1973). Cytological studies on the absorptive surfaces of cestodes. VII. Evidence for the function of the tegument glycocalyx in cation binding by Hymenolepis diminuta. Journal of Parasitology 59, 1021–30.CrossRefGoogle Scholar
Lumsden, R. D. & Murphy, W. A. (1980). Morphological and functional aspects of the cestode surface. In Cellular Interactions in Symbiosis and Parasitism (ed. Cook, C. B., Pappas, P. W. & Rudolph, E. D.), pp. 95130. Columbus, OH: The Ohio State University Press.Google Scholar
Markwell, M. A. K. & Fox, C. F. (1978). Surface specific iodination of membrane proteins of viruses and eukaryotic cells using 1,3,4,5-tetrachloro-3-6-diphenylglycouril. Biochemistry 17, 4807–17.CrossRefGoogle Scholar
McManus, D. P. & Barrett, N. J. (1985). Isolation, fractionation and partial characterization of the tegumental surface from protoscoleces of the hydatid organism, Echinococcus granulosus. Parasitology 90, 111–29.CrossRefGoogle ScholarPubMed
McManus, D. P., McLaren, D. J., Clarke, N. W. T. & Parkhouse, R. M. E. (1987). A comparison of two procedures for labelling the surface of the hydatid disease organism, Echinococcus granulosus, with 125I. Journal of Helminthology 61, 4752.CrossRefGoogle ScholarPubMed
Parkhouse, R. M. E. & Harrison, I. J. S.. (1987). Cyst fluid and surface associated glycoprotein antigens of Taenia species metacestodes. Parasite Immunology 9, 263–8.CrossRefGoogle ScholarPubMed
Pereira, M. E. A., Loures, M. A., Villalta, F. & Andrade, A. F. B. (1980). Lectin receptors as markers for Trypanosoma cruzi developmental stages and a study of the interaction of wheat germ agglutinin with sialic acid residues on epimastigote cells. Journal of Experimental Medicine 152, 1375–92.CrossRefGoogle Scholar
Schmidt, J. & Peters, W. (1987). Localization of glycoconjugates at the tegument of the tapeworms Hymenolepis nana and H. microstoma with gold-labelled lectins. Parasitology Research 73, 80–6.CrossRefGoogle Scholar
Segrest, J. P. & Jackson, R. L (1972). Molecular weight determination of glycoproteins by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. Methods in Enzymology 28, 5463.CrossRefGoogle Scholar
Shepherd, J. C. & McManus, D. P. (1987). Specific and cross-reactive antigens of Echinococcus granulosus hydatid cyst fluid. Molecular and Biochemical Parasitology 25, 143–54.CrossRefGoogle ScholarPubMed
Siebert, A. E., Blitz, R. R., Morita, C. T. & Good, A. H. (1981). Taenia crassiceps: serum and surface immunoglobulins in metacestode infections of mice. Experimental Parasitology 51, 418–30.CrossRefGoogle ScholarPubMed
Siebert, A. E., Good, A. H. & Simmons, J. E. (1978). Kinetics of primary and secondary infections with Taenia crassiceps metacestodes (Zeder, 1800) Rudolphi, 1810 (Cestoda: Cyclophyllidea). International Journal for Parasitology 8, 3943.CrossRefGoogle ScholarPubMed
Smyth, J. D. & McManus, D. P. (1989). The Physiology and Biochemistry of Cestodes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Sogandares-Dernal, F. (1976). Immunoglobulins attached to and in the integument of adult Schistosoma mansoni Sambon 1907, from first infection of CF1 mice. Journal of Parasitology 62, 222–6.CrossRefGoogle Scholar
Sogaxdares-Bernal, F. & Voge, M. (1978). Immunoglobulins on the surfaces of tetrathyridia of Mesocestoides corti Hoeppli 1925 (Cestoda), from laboratory infections of ICR mice. Journal of Parasitology 64, 620–4.CrossRefGoogle Scholar
Threadgold, L. T. & Dunn, J. (1983). Taenia crassiceps: regional variations in ultrastructure and evidence of endocytosis in the cysticercus' tegument. Experimental Parasitology 55, 121–31.CrossRefGoogle ScholarPubMed
Trimble, J. J. & Lumsden, R. D. (1975). Cytochemical characterization of tegument membrane-associated carbohydrates in Taenia crassiceps larvae. Journal of Parasitology 61, 665–76.Google ScholarPubMed
Tsang, V. C. W., Brand, J. A. & Boyer, A. E. (1989). An enzyme-linked immunoelectrotransfer blot assay and glycoprotein antigens for diagnosing human cysticercosis (Taenia solium). Journal of Infectious Diseases 159, 50–9.CrossRefGoogle ScholarPubMed
Willms, K. & Arcos, L. (1977). Taenia solium: host serum proteins on the cysticercus surface identified by an ultrastructural immunoenzyme technique. Experimental Parasitology 43, 396406.CrossRefGoogle ScholarPubMed