Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T10:13:12.942Z Has data issue: false hasContentIssue false

Mitochondrial respiration and genomic analysis provide insight into the influence of the symbiotic bacterium on host trypanosomatid oxygen consumption

Published online by Cambridge University Press:  27 August 2014

A. C. AZEVEDO-MARTINS
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Avenida Carlos Chagas Filho, 343, Bloco G, Subsolo, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-590, Brasil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Brasil
A. C. L. MACHADO
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Avenida Carlos Chagas Filho, 343, Bloco G, Subsolo, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-590, Brasil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Brasil
C. C. KLEIN
Affiliation:
BAMBOO Team, INRIA Grenoble-Rhône-Alpes, Villeurbanne, France Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
L. CIAPINA
Affiliation:
Laboratório Nacional de Computação Científica, Av. Getúlio Vargas, 333, Quitandinha, Petrópolis, RJ, CEP: 25651-075, Brasil
L. GONZAGA
Affiliation:
Laboratório Nacional de Computação Científica, Av. Getúlio Vargas, 333, Quitandinha, Petrópolis, RJ, CEP: 25651-075, Brasil
A. T. R. VASCONCELOS
Affiliation:
Laboratório Nacional de Computação Científica, Av. Getúlio Vargas, 333, Quitandinha, Petrópolis, RJ, CEP: 25651-075, Brasil
M. F. SAGOT
Affiliation:
BAMBOO Team, INRIA Grenoble-Rhône-Alpes, Villeurbanne, France Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
W. DE SOUZA
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Avenida Carlos Chagas Filho, 343, Bloco G, Subsolo, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-590, Brasil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Brasil Instituto Nacional de Metrologia, Qualidade e Tecnologia – Inmetro, Rio de Janeiro, RJ, Brasil
M. EINICKER-LAMAS
Affiliation:
Laboratório Intermediário de Biomembranas, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Avenida Carlos Chagas Filho, 343, Bloco C, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-590, Brasil
A. GALINA*
Affiliation:
Laboratório de Bioenergética e Fisiologia Mitocondrial, Programa de Biofísica e Bioquímica Celular, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Avenida Carlos Chagas Filho, 343, Bloco D SS sala 13, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-590, Brasil
M. C. M. MOTTA*
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Avenida Carlos Chagas Filho, 343, Bloco G, Subsolo, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-590, Brasil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Brasil
*
* Corresponding authors: M.C.M. Motta: Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Avenida Carlos Chagas Filho, 343, Bloco G, Subsolo, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-590, Brasil. E-mail: [email protected]; A. Galina: E-mail: [email protected]
* Corresponding authors: M.C.M. Motta: Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Avenida Carlos Chagas Filho, 343, Bloco G, Subsolo, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-590, Brasil. E-mail: [email protected]; A. Galina: E-mail: [email protected]

Summary

Certain trypanosomatids co-evolve with an endosymbiotic bacterium in a mutualistic relationship that is characterized by intense metabolic exchanges. Symbionts were able to respire for up to 4 h after isolation from Angomonas deanei. FCCP (carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone) similarly increased respiration in wild-type and aposymbiotic protozoa, though a higher maximal O2 consumption capacity was observed in the symbiont-containing cells. Rotenone, a complex I inhibitor, did not affect A. deanei respiration, whereas TTFA (thenoyltrifluoroacetone), a complex II activity inhibitor, completely blocked respiration in both strains. Antimycin A and cyanide, inhibitors of complexes III and IV, respectively, abolished O2 consumption, but the aposymbiotic protozoa were more sensitive to both compounds. Oligomycin did not affect cell respiration, whereas carboxyatractyloside (CAT), an inhibitor of the ADP-ATP translocator, slightly reduced O2 consumption. In the A. deanei genome, sequences encoding most proteins of the respiratory chain are present. The symbiont genome lost part of the electron transport system (ETS), but complex I, a cytochrome d oxidase, and FoF1-ATP synthase remain. In conclusion, this work suggests that the symbiont influences the mitochondrial respiration of the host protozoan.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acestor, N., Zíková, A., Dalley, R. A., Anupama, A., Panigrahi, A. K. and Kenneth, D. S. (2011). Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form. Molecular Cell Proteomics 10, M110.006908.CrossRefGoogle ScholarPubMed
Alves, J. M. P., Voegtly, L., Matveyev, A. V., Lara, A. M., Silva, F. M., Serrano, M. G., Buck, G. A., Teixeira, M. M. G. and Camargo, E. P. (2011). Identification and phylogenetic analysis of heme synthesis genes in trypanosomatids and their bacterial endosymbionts. PLOS ONE 6, e23518.CrossRefGoogle ScholarPubMed
Alves, J. M., Klein, C. C., da Silva, F. M., Costa-Martins, A. G., Serrano, M. G., Buck, G. A., Vasconcelos, A. T., Sagot, M. F., Teixeira, M. M., Motta, M. C. M. and Camargo, E. P. (2013 a). Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evolutionary Biology 13, 190. doi: 10.1186/1471-2148-13-190.CrossRefGoogle ScholarPubMed
Alves, J. M., Serrano, M. G., Maia da Silva, F., Voegtly, L. J., Matveyev, A. V., Teixeira, M. M., Camargo, E. P. and Buck, G. A. (2013 b). Genome evolution and phylogenomic analysis of Candidatus Kinetoplastibacterium, the betaproteobacterial endosymbionts of Strigomonas and Angomonas. PLOS ONE 5, 338350. doi: 10.1093/gbe/evt012.Google ScholarPubMed
Aslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., Depledge, D. P., Fisher, S., Gajria, B., Gao, X., Gardner, M. J., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Hertz-Fowler, C., Houston, R., Innamorato, F., Iodice, J., Kissinger, J. C., Kraemer, E., Li, W., Logan, F. J., Miller, J. A., Mitra, S., Myler, P. J., Nayak, V., Pennington, C., Phan, I., Pinney, D. F., Ramasamy, G., Rogers, M. B., Roos, D. S., Ross, C., Sivam, D., Smith, D. F., Srinivasamoorthy, G., Stoeckert, C. J., Subramanian, S., Thibodeau, R., Tivey, A., Tratman, C., Velarde, G. and Wang, H. (2010). TriTryDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Research 38, D457D463. doi: 10.1093/nar/gkp851.CrossRefGoogle ScholarPubMed
Azevedo-Martins, A. C., Frossard, M. L., de Souza, W., Einicker-Lamas, M. and Motta, M. C. M. (2007). Phosphatidylcholine synthesis in Crithidia deanei: the influence of the endosymbiont. FEMS Microbiology Letters 275, 229236.CrossRefGoogle ScholarPubMed
Belevich, I. and Verkhovsky, M. I. (2008). Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxidants and Redox Signaling 10, 129.CrossRefGoogle ScholarPubMed
Bernard, G., Faustin, B., Passerieux, E., Galinier, A., Rocher, C., Bellance, N., Delage, J. -P., Casteilla, L., Letellier, T. and Rossignol, R. (2006). Physiological diversity of mitochondrial oxidative phosphorylation. American Journal of Physiology Cell Physiology 291, C1172C1182.CrossRefGoogle Scholar
Brandt, U. (2006). Energy converting NADH:quinone oxidoreductase (complex I). Annual Review in Biochemistry 75, 6992.CrossRefGoogle ScholarPubMed
Camargo, E. P. and Freymüller, E. (1977). Endosymbiont as supplier of ornithine carbamoyltransferase in a trypanosomatid. Nature 270, 5253.CrossRefGoogle Scholar
Chang, K. P., Chang, C. S. and Sassa, S. (1975). Heme biosynthesis in bacterium-protozoon symbioses: enzymic defects in host hemofagellates and complemental role of their intracellular symbiotes. Proceedings of the National Academy of Sciences USA 72, 29792983.CrossRefGoogle ScholarPubMed
Dean, S., Gould, M. K., Dewar, C. E. and Schnaufer, A. C. (2013). Single point mutations in ATP synthase compensate for mitochondrial loss in trypanosomatids. Proceedings of the National Academy of Sciences USA 110, 1474114746.CrossRefGoogle Scholar
Du, Y., McLaughlin, G. and Chang, K. P. (1994). 16S ribosomal DNA sequence identies of β- proteobacterial endosymbionts in three Crithidia species. Journal of Bacteriology 176, 30813084.CrossRefGoogle Scholar
Edwards, C. and Chance, C. (1982). Evidence for the presence of two terminal oxidases in the trypanosomatid Crithidia oncopelti . Journal of General Microbiology 128, 14091414.Google ScholarPubMed
Esteves, M. J. G., Andrade, A. F. B., Angluster, J., de Souza, W., Mundim, M. H., Roitman, I. and Pereira, M. E. A. (1982). Cell surface carbohydrates in Crithidia deanei: influence of the endosymbiont. European Journal of Cell Biology 28, 244248.Google Scholar
Fiorini, J. E., Faria e Silva, P. M., Soares, M. J. and Brasil, R. P. (1989). Três novas espécies de tripanosomatídeos de insetos isolados em Alfenas, Minas Gerais, Brasil. Memórias do Instituto Oswaldo Cruz 84, 6974.CrossRefGoogle Scholar
Freymuller, J. E. and Camargo, E. P. (1981). Ultrastructural differences between species of trypanosomatids with and without endosymbionts. Journal of Protozoology 28, 175182.CrossRefGoogle ScholarPubMed
Frossard, M. L., Seabra, S. H., DaMatta, R. A., de Souza, W., de Mello, F. G. and Motta, M. C. M. (2006). An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids. Biochemical and Biophysical Research Communications 343, 443449.CrossRefGoogle ScholarPubMed
Galinari, S. and Camargo, E. P. (1978). Trypanosomatid protozoa: survey of acetylornithinase and ornithine acetyltransferase. Experimental Parasitology 46, 277282.CrossRefGoogle ScholarPubMed
Grigorieff, N. (1999). Structure of the NADH:quinone oxidoreductase (complex I). Current Opinion in Structural Biology 9, 476483.CrossRefGoogle Scholar
Guénebaut, V., Schlitt, A., Weiss, H., Leonard, K. and Friedrich, T. (1998). Consistent structure between bacterial and mitochondrial NADH:quinone oxidoreductase (complex I). Journal of Molecular Biology 276, 105112.CrossRefGoogle Scholar
Hatch, T. P., Al-Hossainy, E. and Silverman, J. A. (1982). Adenine nucleoside and lysine transport in Chlamydia psittaci . Journal of Bacteriology 150, 662670.CrossRefGoogle Scholar
Herby, O. and Persson, L. (1990). Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochemistry Sciences 15, 153158.Google Scholar
Klein, C. C., Alves, J. M., Serrano, M. G., Buck, G. A., Vasconcelos, A. T., Sagot, M. F., Teixeira, M. M., Camargo, E. P. and Motta, M. C. M. (2013). Biosynthesis of vitamins and cofactors in bacterium-harbouring trypanosomatids depends on the symbiotic association as revealed by genomic analyses. PLOS ONE 8, e79786. doi: 10.1371/journal.pone.0079786.CrossRefGoogle ScholarPubMed
Kronick, P. and Hill, G. C. (1974). Evidence for the functioning of cytochrome o in kinetoplastida. Biochimica Biophysica Acta 368, 173180.CrossRefGoogle Scholar
Lenaz, G. and Genova, M. L. (2009). Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. International Journal of Biochemistry and Cell Biology 41, 17501772.CrossRefGoogle ScholarPubMed
Morales, J., Mogi, T., Mineki, S., Takashima, E., Mineki, R., Hirawake, H., Sakamoto, K., Ōmura, S. and Kita, K. (2009). Novel mitochondrial Complex II isolated from Trypanosoma cruzi is composed of 12 peptides including a heterodimeric Ip subunit. Journal of Biological Chemistry 284, 72557263.CrossRefGoogle ScholarPubMed
Motta, M. C. M. (2010). Endosymbiosis in trypanosomatids as a model to study cell evolution. Open Parasitology Journal 4, 139147.CrossRefGoogle Scholar
Motta, M. C. M., Monteiro-Leal, L. H., de Souza, W., Almeida, D. F. and Ferreira, L. C. S. (1997 a). Detection of penicilin-binding proteins in endosymbiosis of the trypanosomatid Crithidia deanei . Journal of Eukaryotic Microbiology 44, 492496.CrossRefGoogle Scholar
Motta, M. C. M., Soares, M. J., Attias, M., Morgado, J., Lemos, A. P., Saad-Nehme, J., Meyer-Fernandes, J. R. and De Souza, W. (1997 b). Ultrastructural and biochemical analysis of the relationship of Crithidia deanei with its endosymbiont. European Journal of Cellular Biology 72, 370377.Google ScholarPubMed
Motta, M. C., Martins, A. C., de Souza, S. S., Catta-Preta, C. M., Silva, R., Klein, C. C., de Almeida, L. G., de Lima Cunha, O., Ciapina, L. P., Brocchi, M., Colabardini, A. C., de Araujo Lima, B., Machado, C. R., de Almeida Soares, C. M., Probst, C. M., de Menezes, C. B., Thompson, C. E., Bartholomeu, D. C., Gradia, D. F., Pavoni, D. P., Grisard, E. C., Fantinatti-Garboggini, F., Marchini, F. K., Rodrigues-Luiz, G. F., Wagner, G., Goldman, G. H., Fietto, J. L., Elias, M. C., Goldman, M. H., Sagot, M. F., Pereira, M., Stoco, P. H., de Mendonça-Neto, R. P., Teixeira, S. M., Maciel, T. E., de Oliveira Mendes, T. A., Ürményi, T. P., de Souza, W., Schenkman, S. and de Vasconcelos, A. T. (2013). Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family. PLOS ONE 8, e60209. doi: 10.1371/journal.pone.0060209.Google ScholarPubMed
Mundim, M. H. and Roitman, I. (1977). Extra nutritional requirements of artificially aposymbiotic Crithidia deanei . Journal of Protozoology 24, 329331.CrossRefGoogle Scholar
Mundim, M. H., Roitman, I., Hermans, M. A. and Kitajima, E. W. (1974). Simple nutrition of Crithidia deanei, a reduviid trypanosomatid with an endosymbiont. Journal of Protozoology 21, 518521.Google ScholarPubMed
Oda, L. M., Alviano, C. S., Costa e Silva Filho, F., Angluster, J., Roitman, I. and De Souza, W. (1984). Surface anionic group in symbiont-bearing and symbiont-free strains of Crithidia deanei . Journal of Protozoology 31, 131134.CrossRefGoogle Scholar
Opperdoes, F. R. and Michels, P. A. (2008). Complex I of trypanosomatids: does it exist? Trends in Parasitology 24, 310317.CrossRefGoogle ScholarPubMed
Palmié-Peixoto, I., Rocha, M. R., Urbina, J., De Souza, W., Einicker-Lamas, M. and Motta, M. C. M. (2006). Effects of sterol-biosynthesis inhibitors on endosymbiont-bearing trypanosomatids. FEMS Microbiology Letters 255, 3342.CrossRefGoogle ScholarPubMed
Schägger, H. (2001). Respiratory supercomplexes. IUBMB Life 52, 119128.CrossRefGoogle Scholar
Speijer, D., Breek, C. K. D., Muijsers, A. O., Groenevelt, P. X., Dekker, H., De Haan, A. and Benne, R. (1996). The sequence of a small subunit of cytochrome c oxidase from Crithidia fasciculata which is homologous to mammalian subunit IV. FEBS Letters 381, 123126.CrossRefGoogle ScholarPubMed
Strauss, M., Hofhaus, G., Schöder, R. R. and Kühlbrandt, W. (2008). Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO Journal 27, 11541160.CrossRefGoogle ScholarPubMed
Teixeira, M. M. G., Borghesan, T. C., Ferreira, R. C., Santos, M. A., Takata, C. S. A., Campaner, M., Nunes, V. L. B., Wilder, R. V., De Souza, W. and Camargo, E. P. (2011). Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist 162, 503524.Google ScholarPubMed
Warren, L. G. (1960). Metabolism of Schizotrypanum cruzi, Chagas. I. Effect of culture age and substrate concentration on respiratory rate. Journal of Parasitology 46, 529539.CrossRefGoogle Scholar
Winkler, H. H. (1976). Rickettsial permeability. An ADP-ATP transport system. Journal of Biological Chemistry 251, 389396.CrossRefGoogle ScholarPubMed
World Health Organization (2007). Update of American trypanosomiasis and leishmania control and research: final report. Pan American Health Organization/World Health Organization, Rio de Janeiro.Google Scholar