Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T04:03:19.890Z Has data issue: false hasContentIssue false

Mimotope-based antigens as potential vaccine candidates in experimental murine cysticercosis

Published online by Cambridge University Press:  14 July 2020

Marianna Nascimento Manhani
Affiliation:
Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, bloco 4C, Uberlândia, Minas Gerais, 38400-902, Brazil Laboratório de Fisiologia, Universidade Federal de São João del-Rei, R. Sebastião Gonçalves Coelho 400, Divinópolis, Minas Gerais, 35501-296, Brazil
Cristiane Queixa Tilelli
Affiliation:
Laboratório de Fisiologia, Universidade Federal de São João del-Rei, R. Sebastião Gonçalves Coelho 400, Divinópolis, Minas Gerais, 35501-296, Brazil
Vanessa da Silva Ribeiro
Affiliation:
Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, bloco 4C, Uberlândia, Minas Gerais, 38400-902, Brazil
Luiz Ricardo Goulart
Affiliation:
Laboratório de Nanobiotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Av. Amazonas s/n, Bl. 2E, Uberlândia, Minas Gerais, 38400-902, Brazil
Julia Maria Costa-Cruz*
Affiliation:
Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, bloco 4C, Uberlândia, Minas Gerais, 38400-902, Brazil
*
Author for correspondence: Julia Maria Costa-Cruz, E-mail: [email protected]

Abstract

Human cysticercosis is a public health problem caused by Taenia solium metacestodes; thus, eradication of T. solium transmission by vaccination is an urgent requirement. The Cc48 mimotope from T. solium cysticerci was tested expressed in phage particles (mCc48) and chemically synthesized (sCc48) as a vaccine candidate in experimental murine cysticercosis. For this, BALB/c mice were immunized with mCc48 (G1; n = 40), sCc48 (G2; n = 40) and phosphate-buffered saline (PBS) (G3; n = 40, positive control) and challenged with Taenia crassiceps metacestodes. Another PBS group without parasite challenge was used as a negative control (G4; n = 40). Mice were sacrificed 15, 30, 45 and 60 days post-infection for cysticerci and serum collection. Immunization efficacy was determined by cysticerci counting. Serum samples were tested by ELISA to verify antibody (IgM, IgG, IgA and IgE) and cytokine (IFNγ and IL-4) levels. The sCc48 achieved the highest rates of protection and efficacy (90 and 98%, respectively). The group immunized with mCc48 presented the highest reactivity for IgM, IgG and IgE. All groups presented IL-4, but IFNγ was quite variable among groups. The protection induced by sCc48 synthetic peptide supports further studies of this mimotope as a potential vaccine candidate against cysticercosis.

Type
Research Article
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso-Trujillo, J, Rivera-Montoya, I, Rodriguez-Sosa, M and Terrazas, LI (2007) Nitric oxide contributes to host resistance against experimental Taenia crassiceps cysticercosis. Parasitology Research 100, 13411350.CrossRefGoogle ScholarPubMed
Assana, E, Kyngdon, CT, Gauci, CG, Geerts, S, Dorny, P, De Deken, R, Anderson, GA, Zoli, AP and Lightowlers, MW (2010) Elimination of Taenia Solium transmission to pigs in a field trial of the TSOL18 vaccine in Cameroon. International Journal for Parasitology 40, 515519.CrossRefGoogle Scholar
Baig, S, Damian, RT, Morales-Montor, J, Ghaleb, A, Baghdadi, A and White, AC Jr, (2006) Protection from murine cysticercosis by immunization with a parasite cysteine protease. Microbes and Infection 8, 27332735.CrossRefGoogle ScholarPubMed
Betancourt, MA, de Aluja, AS, Sciutto, E, Hernández, M, Bobes, RJ, Rosas, G, Hernández, B, Fragoso, G, Hallal-Calleros, C, Aguilar, L and Flores-Peréz, I (2012) Effective protection induced by three different versions of the porcine S3Pvac anticysticercosis vaccine against rabbit experimental Taenia pisiformis cysticercosis. Vaccine 30, 27602767.CrossRefGoogle ScholarPubMed
Capelli-Peixoto, J, Chavez-Olortegui, C, Chaves-Moreira, D, Minozzo, JC, Gabardo, J, Teixeira, KN, Thomaz-Soccol, V, Alvarenga, LM and de Moura, J (2011) Evaluation of the protective potential of a Taenia Solium cysticercus mimotope on murine cysticercosis. Vaccine 29, 94739479.CrossRefGoogle ScholarPubMed
Carrara, GMP, Silva, GB, Faria, LS, Nunes, DS, Ribeiro, VS, Lopes, CA, Gonçalves-Pires, MDRF, Santos, MM, Borges, IP, Ferreira-Junior, Á, Ávila, VMR and Costa-Cruz, JM (2020) IgY antibody and human neurocysticercosis: a novel approach on immunodiagnosis using Taenia crassiceps hydrophobic antigens. Parasitology 147, 240247.CrossRefGoogle ScholarPubMed
Charles, G and Lightowlers, MW (2013) Genes encoding homologous antigens in taeniid cestode parasites implications for development of recombinant vaccines produced in Escherichia coli, Bioengineered 4, 168171.Google Scholar
Cui, J, Ren, HJ, Liu, RD, Wang, L, Zhang, ZF and ZQ, Wang (2013) Phage-displayed specific polypeptide antigens induce significant protective immunity against Trichinella spiralis infection in BALB/c mice. Vaccine 31, 11711177.CrossRefGoogle ScholarPubMed
de Aluja, AS, Villalobos, NM, Nava, G, Toledo, A, Martinez, JJ, Plancarte, A, Rodarte, LF, Fragoso, G and Sciutto, E (2005) Therapeutic capacity of the synthetic peptide-based vaccine against Taenia solium cysticercosis in pigs. Vaccine 23, 40624069.CrossRefGoogle ScholarPubMed
Fragoso, G, Meneses, G, Sciutto, E, Fleury, A and Larralde, C (2008) Preferential growth of Taenia crassiceps cysticerci in female mice holds across several laboratory mice strains and parasite lines. Journal of Parasitology 94, 551553.CrossRefGoogle ScholarPubMed
Fragoso, G, Esquivel-Guadarrama, F, Santana, MA, Bobes, RJ, Hernandez, B, Cervantes, J, Segura, R, Goldbaum, FA, Sciutto, E and Rosas, G (2011) Heterologous prime-boost oral immunization with GK-1 peptide from Taenia crassiceps cysticerci induces protective immunity. Clinical and Vaccine Immunology 18, 10671076.CrossRefGoogle ScholarPubMed
Garcia, HH, Gonzalez, AE, Del Brutto, OH, Tsang, VCW, Llanos-Zavalaga, F, Gonzalvez, G, Romero, J and Gilman, RH and Cysticercosis Working Group in Peru (2007) Strategies for the elimination of taeniasis/cysticercosis. Journal of Neurological Sciences 262, 153157.CrossRefGoogle ScholarPubMed
Gauci, CG, Jayashi, CM, Gonzalez, AE, Lackenby, J and Lightowlers, MW (2012) Protection of pigs against Taenia solium cysticercosis by immunization with novel recombinant antigens. Vaccine 30, 38243828.CrossRefGoogle ScholarPubMed
Gause, WC, Urban, JF and Stadecker, MJ (2003) The immune response to parasitic helminths: insights from murine models. Trends in Immunology 24, 269277.CrossRefGoogle ScholarPubMed
Handali, S and Pawitan, Y (2012) Verifying elimination programs with a special emphasis on cysticercosis endpoints and postelimination surveillance. Journal of Parasitology Research 2012, 974950.CrossRefGoogle ScholarPubMed
Jayashi, CM, Kyngdon, CT, Gauci, CG, Gonzalez, AE and Lightowlers, MW (2012) Successful immunization of naturally reared pigs against porcine cysticercosis with a recombinant oncosphere antigen vaccine. Veterinary Parasitology 188, 261267.CrossRefGoogle ScholarPubMed
Li, JN, Wang, H, Han, YX, Zhao, YT, Zhou, HH, Xu, J and Li, L (2019) Novel peptides screened by phage display peptide library can mimic epitopes of the FnBPA-A protein and induce protective immunity against Staphylococcus aureus in mice. Microbiologyopen 8, e910.CrossRefGoogle ScholarPubMed
Manhani, MN, Ribeiro, VS, Silva, DAO and Costa-Cruz, JM (2009) Specific IgG avidity in active and inactive human neurocysticercosis. Diagnostic Microbiology and Infectious Diseases 5, 211213.CrossRefGoogle Scholar
Manhani, MN, Ribeiro, VS, Cardoso, R, Ueira-Vieira, C, Goulart, LR and Costa-Cruz, JM (2011) Specific phage-displayed peptides discriminate different forms of neurocysticercosis by antibody detection in the serum samples. Parasite Immunology 33, 322329.CrossRefGoogle ScholarPubMed
Manoutcharian, K, Terrazas, LI, Gevorkian, G, Acero, G, Petrossian, P, Rodriguez, M and Govezensky, T (1999) Phage-displayed T-cell epitope grafted into immunoglobulin heavy-chain complementarity-determining regions: an effective vaccine design tested in murine cysticercosis. Infection and Immunity 67, 47644770.CrossRefGoogle ScholarPubMed
Manoutcharian, K, Diaz-Orea, A, Gevorkian, G, Fragoso, G, Acero, G, Gonzalez, E, De Aluja, A, Villalobos, N, Gómez-Conde, E and Sciutto, E (2004) Recombinant bacteriophage-based multiepitope vaccine against Taenia solium pig cysticercosis. Veterinary Immunology and Immunopathology 99, 1124.CrossRefGoogle ScholarPubMed
Mooney, KA, Spolski, RJ, See, EJ and Kuhn, RE (2000) Immune destruction of larval Taenia in mice. Infection and Immunity 68, 23932401.CrossRefGoogle ScholarPubMed
Morales, J, Juan Martinez, J, Manoutcharian, K, Hernandez, M, Fleury, A, Gevorkian, G, Acero, G, Blancas, A, Toledo, A, Cervantes, J, Maza, V, Quet, F, Bonnabau, H, de Aluja, AS, Fragoso, G, Larralde, C and Sciutto, E (2008) Inexpensive anti-cysticercosis vaccine: S3Pvac expressed in heat inactivated M13 filamentous phage proves effective against naturally acquired Taenia solium porcine cysticercosis. Vaccine 26, 28992905.CrossRefGoogle ScholarPubMed
Poudel, I, Sah, K, Subedi, S, Kumar Singh, D, Kushwaha, P, Colston, A, Gauci, CG, Donadeu, M and Lightowlers, MW (2019) Implementation of a practical and effective pilot intervention against transmission of Taenia solium by pigs in the Banke district of Nepal. PLoS Negected Tropical Diseases 13, e0006838.CrossRefGoogle ScholarPubMed
Rassy, D, Bobes, RJ, Rosas, G, Anaya, VH, Brehm, K, Hernandez, B, Cervantes, J, Pedraza, S, Morales, J, Villalobos, N, de Aluja, AS, Laclette, JP, Nunes, CM, Biondi, GF, Fragoso, G, Hernández, M and Sciutto, E (2010) Characterization of S3Pvac anti-cysticercosis vaccine components: implications for the development of an anti-cestodiasis vaccine. PLoS One 5, e11287.CrossRefGoogle ScholarPubMed
Rodriguez-Sosa, M, David, JR, Bojalil, R, Satoskar, AR and Terrazas, LI (2002) Cutting edge: susceptibility to the larval stage of the helminth parasite Taenia crassiceps is mediated by Th2 response induced via STAT6 Signaling. Journal of Immunology 168, 31353139.CrossRefGoogle ScholarPubMed
Samoylova, TI, Norris, MD, Samoylov, AM, Cochran, AM, Wolfe, KG, Petrenko, VA and Cox, NR (2012) Infective and inactivated filamentous phage as carriers for immunogenic peptides. Journal of Virological Methods 183, 6368.CrossRefGoogle ScholarPubMed
Schmidt, V, O'Hara, MC, Ngowi, B, Herbinger, KH, Noh, J, Wilkins, PP, Richter, V, Kositz, C, Matuja, W and Winkler, AS (2019) Taenia solium cysticercosis and taeniasis in urban settings: epidemiological evidence from a health-center based study among people with epilepsy in Dar es Salaam, Tanzania. PLoS Neglected Tropical Diseases 13, e0007751CrossRefGoogle ScholarPubMed
Sciutto, E, Fragoso, G, Trueba, L, Lemus, D, Montoya, RM, Diaz, ML, Govezensky, T, Lomeli, C, Tapia, G and Larralde, C (1990) Cysticercosis vaccine – cross protecting immunity with T. solium antigens against experimental murine T. crassiceps cysticercosis. Parasite Immunology 12, 687696.CrossRefGoogle Scholar
Sciutto, E, Fragoso, G and Larralde, C (2008) Taenia crassiceps as a model for Taenia solium and the S3Pvac vaccine. Parasite Immunology 33, 7980.CrossRefGoogle Scholar
Silva, GB, Nunes, DS, Sousa, JEN, Gonçalves-Pires, MRF, Levenhagen, MA and Costa-Cruz, JM (2017) Antigenic fractions from Taenia crassiceps metacestodes obtained by hydrophobicity for the immunodiagnosis of active and inactive forms of neurocysticercosis in human cerebrospinal fluid samples. Parasitology International 66, 134138.CrossRefGoogle ScholarPubMed
Sotelo, J (2011) Clinical manifestations, diagnosis, and treatment of neurocysticercosis. Current Neurology and Neuroscience Reports 11, 529535.CrossRefGoogle ScholarPubMed
Thys, S, Mwape, KE, Lefèvre, P, Dorny, P, Marcotty, T, Phiri, AM, Phiri, IK and Gabriël, S (2015) Why latrines are not used: communities' perceptions and practices regarding latrines in a Taenia solium endemic rural area in eastern Zambia. PLoS Neglected Tropical Diseases 9, e0003570.CrossRefGoogle ScholarPubMed
Toenjes, SA, Spolski, RJ, Mooney, KA and Kuhn, RE (1999) The systemic immune response of BALB/c mice infected with larval Taenia crassiceps is a mixed Th1/Th2-type response. Parasitology 118, 623633.CrossRefGoogle ScholarPubMed
Toledo, A, Larralde, C, Fragoso, G, Gevorkian, G, Manoutcharian, K, Hernandez, M, Acero, G, Rosas, G, López-Casillas, F, Garfias, CK, Vázquez, R, Terrazas, I and Sciutto, E (1999) Towards a Taenia solium cysticercosis vaccine: an epitope shared by Taenia crassiceps and Taenia solium protects mice against experimental cysticercosis. Infection and Immunity 67, 25222530.CrossRefGoogle ScholarPubMed
Toledo, A, Fragoso, G, Rosas, G, Hernandez, M, Gevorkian, G, Lopez-Casillas, F, Hernández, B, Acero, G, Huerta, M, Larralde, C and Sciutto, E (2001) Two epitopes shared by Taenia crassiceps and Taenia solium confer protection against murine T. crassiceps cysticercosis along with a prominent T1 response. Infection and Immunity 69, 17661773.CrossRefGoogle Scholar
Urban, JF, Maliszewski, CR, Madden, KB, Katona, IM and Finkelman, FD (1995) IL-4 treatment can cure established gastrointestinal nematode infections in immunocompetent and immunodeficient mice. The Journal of Immunology 154, 46754684.Google ScholarPubMed
Vaz, AJ, Nunes, CM, Piazza, RMF, Livramento, JA, Silva, MV, Nakamura, PM and Ferreira, AW (1997) Immunoblot with cerebrospinal fluid from patients with neurocysticercosis using antigen from cysticerci of Taenia solium and Taenia crassiceps. American Journal of Tropical Medicine and Hygiene 57, 354357.CrossRefGoogle ScholarPubMed
Vazquez-Talavera, J, Solis, CF, Terrazas, LI and Laclette, JP (2001) Characterization and protective potential of the immune response to Taenia solium paramyosin in a murine model of cysticercosis. Infection and Immunity 69, 54125416.CrossRefGoogle Scholar
Willms, K and Zurabian, R (2010) Taenia crassiceps: in vivo and in vitro models. Parasitology 137, 335346.CrossRefGoogle ScholarPubMed
World Health Organization (2010) First WHO Report on Neglected Tropical Diseases: Working to Overcome the Global Impact of Neglected Tropical Diseases. Geneva, Switzerland: World Health Organization.Google Scholar
World Health Organization (2015) Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007-2015. Geneva, Switzerland: World Health Organization.Google Scholar
World Health Organization (2019) Teniasis/Cisticercosis. Fact-Sheets. Geneva, Switzerland: World Health Organization.Google Scholar