Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T17:53:37.643Z Has data issue: false hasContentIssue false

Metazoan parasites of freshwater cyprinid fish (Leuciscus cephalus): testing biogeographical hypotheses of species diversity

Published online by Cambridge University Press:  08 September 2008

M. SEIFERTOVÁ
Affiliation:
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
M. VYSKOČILOVÁ
Affiliation:
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
S. MORAND
Affiliation:
Institut des Sciences de l'Evolution – CNRS, Département Génétique Environnement, CC065, Université Montpellier 2, 34095, Montpellier cedex 05, France
A. ŠIMKOVÁ*
Affiliation:
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
*
*Corresponding author: Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic. Tel: +420 549497363. Fax: +420 541211214. E-mail: [email protected]

Summary

The diversity and similarity of parasite communities is a result of many determinants widely considered in parasite ecology. In this study, the metazoan parasite communities of 15 chub populations (Leuciscus cephalus) were sampled across a wide geographical range. Three hypotheses of biogeographical gradients in species diversity were tested: (1) latitudinal gradient, (2) a ‘favourable centre’ versus ‘local oasis’ model, and (3) decay of similarity with distance. We found that the localities in marginal zones of chub distribution showed lower parasite species richness and diversity. A latitudinal gradient, with increasing abundance of larvae of Diplostomum species, was observed. There was a general trend for a negative relationship between relative prevalence or abundance and the distance from the locality with maximum prevalence or abundance for the majority of parasite species. However, statistical support for a ‘favourable centre’ model was found only for total abundance of Monogenea and for larvae of Diplostomum species. The phylogenetic relatedness of host populations inferred an important role when the ‘favourable centre’ model was tested. Testing of the hypothesis of ‘decay of similarity with geographical distance’ showed that phylogenetic distance was more important as a determinant of similarity in parasite communities than geographical distance between host populations.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banarescu, P. M. (1989). Vicariant patterns and dispersal in European freshwater fishes. Spixiana 12, 91103.Google Scholar
Banarescu, P. M. (1990). Zoogeography of Freshwaters. I. General Distribution and Dispersal of Freshwater Animals. Aula Verlag, Wiesbaden, Germany.Google Scholar
Banarescu, P. M. (1991). Zoogeography of Freshwaters. II. Distribution and Dispersal of Freshwater Animals in North America and Eurasia. Aula Verlag, Wiesbaden, Germany.Google Scholar
Berg, L. S. (1949). Freshwater Fishes of the USSR and Adjacent Countries. Academia Nauk USSR, Moscow and Lenningrad (in Russian).Google Scholar
Bianco, P. G. (1983). Leuciscus lucumonis n. sp. from Italy. Senckenbergiana Biologica 64, 8187.Google Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Choudhury, A. and Dick, T. A. (2000). Richness and diversity of helminth communities in tropical freshwater fishes: empirical evidence. Journal of Biogeography 27, 935956.CrossRefGoogle Scholar
Dowling, T. E., Tibbets, C. A., Minckley, W. L. and Smith, G. R. (2002). Evolutionary relationships of the Plagopterins (Teleostei: Cyprinidae) from cytochrome b sequences. Copeia 3, 665678.CrossRefGoogle Scholar
Durand, J. D., Persat, H. and Bouvet, Y. (1999). Phylogeography and postglacial dispersion of the chub (Leuciscus cephalus) in Europe. Molecular Ecology 8, 989997.Google Scholar
Durand, J. D., Ünlü, E., Doadrio, I., Pipoyan, S. and Templeton, A. R. (2000). Origin, radiation, dispersion and allopatric hybridization in the chub Leuciscus cephalus. Proceedings of the Royal Society of London, B 267, 16871697.Google Scholar
Ergens, R. and Lom, J. (1970). Causative Agents of Parasitic Fish Diseases. Academia, Prague (in Czech).Google Scholar
Faith, D. P., Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69, 5768.CrossRefGoogle Scholar
Fellis, K. J. and Esch, G. W. (2005). Autogenic-allogenic status affects interpond community similarity and species-area relationship of macroparasites in the bluegill sunfish, Lepomis macrochirus, from a series of freshwater ponds in the Piedmont area of North Carolina. Journal of Parasitology 91, 764767.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist 125, 115.CrossRefGoogle Scholar
Garcillán, P. P. and Ezcurra, E. (2003). Biogeographic regions and β-diversity of woody dryland legumes in the Baja California peninsula. Journal of Vegetation Science 14, 859868.CrossRefGoogle Scholar
González, M. T. and Moreno, C. A. (2005). The distribution of the ectoparasite fauna of Sebastes capensis from the southern hemisphere does not correspond with zoogeographical provinces of free-living marine animals. Journal of Biogeography 32, 15391547.CrossRefGoogle Scholar
Guinand, B., Bouvet, Y. and Brohon, B. (1996). Spatial aspects of genetic differentiation of the European chub in the Rhone River basin. Journal of Fish Biology 49, 714726.CrossRefGoogle Scholar
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, USA.Google Scholar
Kennedy, C. R. (1995). Richness and diversity of macroparasite communities in tropical eels Anguilla reinhardtii in Queensland, Australia. Parasitology 111, 233245.CrossRefGoogle Scholar
Kennedy, C. R. and Bush, A. O. (1994). The relationship between pattern and scale in parasite communities: a stranger in a strange land. Parasitology 109, 187196.Google Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S., Mouillot, D. and Poulin, R. (2008). Latitudinal gradients in niche breadth: empirical evidence from haematophagous ectoparasites. Journal of Biogeography 35, 592601. doi:10.1111/j.1365-2699.2007.01800.xCrossRefGoogle Scholar
Kumar, S., Tamura, K. and Nei, M. (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5, 150163.Google Scholar
Legendre, P. and Legendre, L. (1998). Numerical Ecology. 2nd English Edn. Elsevier, Amsterdam.Google Scholar
Legendre, P., Lapointe, F. J. and Casgrain, P. (1994). Modelling brain evolution from behavior: a permutational regression approach. Evolution 48, 14871499.CrossRefGoogle ScholarPubMed
Lile, N. K. (1998). Alimentary tract helminths of four pleuronectid flatfish in relation to host phylogeny and ecology. Journal of Fish Biology 53, 945953.CrossRefGoogle Scholar
Magurran, A. E. (1988). Ecological Diversity and Measurement. Princeton University Press, Princeton, USA.Google Scholar
Margolis, L., Esch, G. W., Holmes, J. C., Kuris, A. M. and Schad, G. A. (1982). The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). Journal of Parasitology 68, 131133.Google Scholar
Nekola, J. C. and White, P. S. (1999). The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26, 867878.CrossRefGoogle Scholar
Oliva, M. E. and González, M. T. (2005). The decay of similarity over geographical distance in parasite communities of marine fishes. Journal of Biogeography 32, 13271332. doi:10.1111/j.1365-2699.2005.01288.xCrossRefGoogle Scholar
Posada, D. and Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817818.CrossRefGoogle ScholarPubMed
Poulin, R. (1995). Phylogeny, ecology, and the richness of parasite communities in vertebrates. Ecological Monographs 65, 283302.Google Scholar
Poulin, R. (1997). Species richness of parasite assemblages: evolution and patterns. Annual Review of Ecology and Systematics 28, 341358.Google Scholar
Poulin, R. (2001). Another look at the richness of helminth communities in tropical freshwater fish. Journal of Biogeography 28, 737743.CrossRefGoogle Scholar
Poulin, R. (2003). The decay of similarity with geographical distance in parasite communities of vertebrate hosts. Journal of Biogeography 30, 16091615.Google Scholar
Poulin, R. (2007). The structure of parasite communities in fish hosts: ecology meets geography and climate. Parassitologia 49, 169172.Google Scholar
Poulin, R. and Dick, T. A. (2007). Spatial variation in population density across the geographical range in helminth parasites of yellow perch Perca flavescens. Ecography 30, 629636. doi:10.1111/j.2007.0906-7590.05139.xCrossRefGoogle Scholar
Poulin, R. and Morand, S. (1999). Geographical distances and the similarity among parasite communities of conspecific host populations. Parasitology 119, 369374.Google Scholar
Poulin, R. and Rohde, K. (1997). Comparing the richness of metazoan ectoparasite communities of marine fishes: controlling for host phylogeny. Oecologia 110, 278283.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. (1987). Community diversity: relative roles of local and regional processes. Science 235, 167171.Google Scholar
Rohde, K. (1984). Zoogeography of marine parasites. Helgoländer Meeresuntersuchungen 37, 3552.CrossRefGoogle Scholar
Rohde, K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514527.CrossRefGoogle Scholar
Rohde, K. and Heap, M. (1998). Latitudinal differences in species and community richness and in community structure of metazoan endo- and ectoparasites of marine teleost fish. International Journal for Parasitology 28, 461474.CrossRefGoogle ScholarPubMed
Rohde, K., Hayward, C. and Heap, M. (1995). Aspects of the ecology of metazoan ectoparasites of marine fishes. International Journal for Parasitology 25, 945970.CrossRefGoogle ScholarPubMed
Ronquist, F. and Huelsenbeck, J. P. (2003). MrBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574. doi:10.1093/bioinformatics/btg180Google Scholar
Rosenzweig, M. L. and Sandlin, E. A. (1997). Special diversity and latitudes: listening to area's signal. Oikos 80, 172176.CrossRefGoogle Scholar
Sagarin, R. D. and Gaines, S. D. (2002). The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecology Letters 5, 137147.Google Scholar
Schmidt, T. R. and Gold, J. R. (1993). Complete sequence of the mitochondrial cytochrome b gene in the cherryfin shiner, Lytrurus roseipinnis (Teleostei: Cyprinidae). Copeia 3, 880883.Google Scholar
Soininen, J., McDonald, R. and Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography 30, 312. doi:10.1111/j.2006.0906-7590.04817.xCrossRefGoogle Scholar
Swofford, D. L. (2002). PAUP*: Phylogenetic Analysis using Parsimony (*and otherMethods), Version 4. Sinauer Associates, Sunderland, Massachusetts, USA.Google Scholar