Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T21:54:15.223Z Has data issue: false hasContentIssue false

Mesocestoides corti: Morphological features and glycogen mobilization during in vitro differentiation from larva to adult worm

Published online by Cambridge University Press:  09 October 2009

G. CABRERA
Affiliation:
Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
I. ESPINOZA
Affiliation:
Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
U. KEMMERLING
Affiliation:
Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile Facultad de Ciencias de la Salud, Universidad de Talca, Chile
N. GALANTI*
Affiliation:
Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
*
*Corresponding author: Norbel Galanti, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 70061, Santiago, Chile. Fax: 56-2-7355580, Tel.: 56-2-6786475, E-mail: [email protected]

Summary

Mesocestodes corti has the capacity to develop from the tetrathyridium (larva) stage to adult worm in vitro by trypsin and serum stimulation. Consequently, it has been used as an experimental model system for studying cestode development, host-parasite relationships and anthelmintic drugs. We describe morphological features in 5 different developmental stages of M. corti obtained in vitro, including larvae from the peritoneal cavity of infected mice, trypsin- and serum-stimulated larvae, elongated parasites as well as segmented and mature worms. It is unambiguously confirmed that sexually mature worms are obtained as a result of this in vitro process of differentiation. Defined cellular regions are present in all stages of development studied, some of them surrounded by a basal lamina. Glycogen is present in the larvae obtained from the mouse peritoneal cavity and in parasites encapsulated in the mouse host liver. Glycogen distribution in the parasite changes on trypsin and serum stimulation to differentiate. We propose that changes in the distribution of neutral polysaccharides in the parenchyma of the parasite at different stages of development and degradation of polysaccharides in the transition from segmented to adult worm are related to energy needs necessary for the cellular processes leading to the mature specimen.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrett, N. J., Smyth, J. D. and Ong, S. G. (1982). Spontaneous sexual differentiation of M. corti tetrathyridia in vitro. International Journal for Parasitology 12, 315322.CrossRefGoogle Scholar
Berntzen, A. K. and Mueller, J. F. (1964). In vitro cultivation of Spirometra mansonoides (Cestoda) from the procercoid to the early adult. Journal of Parasitology 50, 705711.CrossRefGoogle Scholar
Britos, L., Dominguez, L., Ehrlich, R. and Marin, M. (2000). Effect of praziquantel on the strobilar development of Mesocestoides corti in vitro. Journal of Helminthology 74, 295299.CrossRefGoogle ScholarPubMed
Bush, A. O., Fernandez, J. C., Esch, G. W. and Seed, J. (2001) Parasitism: The Diversity and Ecology of Animal Parasites. 1st Edn.Cambridge University Press, Cambridge.Google Scholar
Crosbie, P. R., Nadler, S. A., Platzer, E. G., Kerner, C., Mariaux, J. and Boyce, W. M. (2000). Molecular systematics of Mesocestoides spp. (Cestoda: Mesocestoididae) from domestic dogs (Canis familiaris) and coyotes (Canis latrans). Journal of Parasitology 86, 350357.CrossRefGoogle ScholarPubMed
Dubinsky, P., Ruscinova, B., Hetmanski, S. L., Arme, C., Turcekova, L. and Rybos, M. (1991). Some enzymes of carbohydrate metabolism in Mesocestoides corti and Heterakis spumosa. Journal of Helminthology 65, 187192.CrossRefGoogle ScholarPubMed
Esch, G. W. and Smyth, J. D. (1976). Studies on the in vitro culture of Taenia crassiceps. International Journal of Parasitology 6, 143149.CrossRefGoogle ScholarPubMed
Espinoza, I. (2002). Cellular and molecular changes during the in vitro development of Mesocestoides corti. PhD Thesis, Faculty of Medicine, University of Chile, 168 p.Google Scholar
Espinoza, I., Galindo, M., Bizarro, C. V., Ferreira, H. B., Zaha, A. and Galanti, N. (2005). Early post-larval development of the endoparasitic platyhelminth Mesocestoides corti: Trypsin provokes reversible tegumental damage leading to serum-induced cell proliferation and growth. Journal of Cellular Physiology 205, 211217.CrossRefGoogle ScholarPubMed
Espinoza, I., Gómez, C., Galindo, M. and Galanti, N. (2007). Developmental expression pattern of histone H4 gene associated to DNA synthesis in the endoparasitic platyhelminth Mesocestoides corti. Gene 386, 3541.CrossRefGoogle ScholarPubMed
Etges, F. G. and Marinakis, V. (1991). Formation and excretion of calcareous bodies by the metacestode (tetrathyridium) of Mesocestodes corti vogae. Journal of Parasitology 77, 595602.CrossRefGoogle Scholar
Galindo, M., Schadebrodt, G. and Galanti, N. (2008). Echinococcus granulosus: Cellular territories and morphological regions in mature protoscoleces. Experimental Parasitology 119, 524533.CrossRefGoogle ScholarPubMed
García-Llamazares, J. L., Merino-Pelaez, G., Prieto-Fernández, J. G. and Alvarez de Felipe, A. I. (2002). Effects of netobimin treatment on the glucose and glycogen contents of Echinococcus granulosus cysts from gerbils. Veterinary Research Communcations 26, 5559.CrossRefGoogle ScholarPubMed
Hart, J. L. (1968). Regeneration of tetrathyridia of Mesocestoides corti (Cestode, Ciclophyllidea) in vivo and in vitro. Journal of Parasitology 54, 950956.CrossRefGoogle Scholar
Hess, H. (1980). Ultrastructural study of the tetrathyridium of Mesocestoides corti, 1925: Tegument and parenchyma. Zeitschrift für Parasitenkunde 61, 135159.CrossRefGoogle ScholarPubMed
Hess, H. and Guggenheim, R. (1977). A study of the microtriches and sensory processes of the tetrathyridium of Mesocestoides corti Hoeppl, 1925, by transmission and scanning electron microscopy. Zeitschrift für Parasitenkunde 53, 189199.CrossRefGoogle Scholar
Hrckova, G., Halton, D. W., Maule, A. G., Brennan, G. P., Shaw, C. and Johnston, C. F. (1993). Neuropeptide F-immunoreactivity in the tetrathyridium of Mesocestoides corti (Cestoda: Cyclophyllidea) Parasitology Research 79, 690695.CrossRefGoogle ScholarPubMed
Hrckova, G., Halton, D. W., Maule, A. G., Shaw, C. and Johnston, C. F. (1994). 5-Hyxdroxytryptamine (Serotonin)-immunoreactivity in the nervous system of Mesocestoides corti tetrathyridia (Cestoda: Cyclophyllidea). Journal of Parasitology 80, 144148.CrossRefGoogle Scholar
Hoeppli, R. J. C. (1925). Mesocestoides corti, a new species of cestode from the mouse. Journal of Parasitology 12, 9196.CrossRefGoogle Scholar
Humason, G. L. (1979). Animal Tissue Techniques, 4th ed. p. 661. W.H. Freeman and Company, San Francisco.Google Scholar
Kawamoto, F., Fujioka, H. and Kumada, N. (1986 a). Studies on the post-larval development of cestodes of the genus Mesocestoides: Trypsin-induced development of M. lineatus in vitro. International Journal for Parasitology 16, 333340.CrossRefGoogle ScholarPubMed
Kawamoto, F., Fujioka, H., Kumada, N. and Kojima, K. (1986 b). Mesocestoides lineatus: Trypsin induced development to adult mediated by Ca2+ and protein kinase C. Experimental Parasitology 62, 309315.CrossRefGoogle ScholarPubMed
Kawamoto, F., Fujioka, H., Mizuno, S., Kumada, N. and Voge, M. (1986 c). Studies on the postlarval development of cestodes of the genus Mesocestoides: Shedding and further development of M. lineatus and M. corti tetrathrdia in vivo. International Journal for Parasitology 16, 323331.CrossRefGoogle Scholar
Kemmerling, U., Cabrera, G., Campos, E. O., Inestrosa, N. C. and Galanti, N. (2006). Localization, specific activity and molecular forms of acetylcholinesterase in developmental stages of the cestode Mesocestoides corti. Journal of Cellular Physiology 206, 503509.CrossRefGoogle ScholarPubMed
Kiernan, J. A. (1981). Histological and Histochemical Methods: Theory and Practice. First edition. pp. 8–168. Oxford, England. British Library Cataloguing in Publication Data.Google Scholar
Loos-Frank, B. (1991). One or two intermediated hosts in the life cycle of Mesocestoides (Cyclophylldea, Mesocestoidiae?). Parasitology Research 77, 726728.CrossRefGoogle ScholarPubMed
McManus, J. F. A. (1946). Histological demonstration of mucin after periodic acid. Nature 158, 202.CrossRefGoogle ScholarPubMed
Markoski, M., Bizarro, C., Farias, S., Espinoza, I., Galanti, N., Zaha, A. and Ferreira, H. B. (2003). In vitro segmentation induction of Mesocestoides corti (Cestoda) tetrathyridia. Journal of Parasitology 89, 2734.CrossRefGoogle ScholarPubMed
Markoski, M., Trindade, E., Cabrera, G., Laschuk, A., Galanti, N., Zaha, A., Nader, H. and Ferreira, H. B. (2006). The damaging action of praziquantel and albendazole on muscle, tegument and cell organization during the in vitro development of Mesocestoides corti (Platyhelminthes: Cestoda). Parasitology International 55, 5161.CrossRefGoogle Scholar
Novak, M. (1972). Quantitative studies on the growth and multiplication of tetrathyridia of Mesocestoides corti Hoepli, 1925 (Cestoda: Cyclophyllidea) in rodents. Canadian Journal of Zoology 50, 11891196.CrossRefGoogle Scholar
Ong, S. J. and Smyth, J. D. (1986). Effects of some culture factors on sexual differentiation of Mesocestodes corti grown from tetrathyridia in vitro. International Journal for Parasitology 16, 361368.CrossRefGoogle Scholar
Orpin, C. G., Huskisson, N. S. and Ward, P. F. (1976). Molecular structure and morphology of glycogen isolated from the cestode, Moniezia expansa. Parasitology 73, 8395.CrossRefGoogle ScholarPubMed
Rausch, R. L. (1994). Family Mesocestoididae Fuhrmann, 1907. In Keys to the Cestode Parasites of Vertebrates. (eds. Khalil, L. F., Jones, A. and Bray, R. A.)., pp. 309314. CAB International, Wallingford, UK.Google Scholar
Saldaña, J., Marin, M., Fernández, C. and Dominguez, L. (2001). In vitro taurocholate-induced segmentation and clustering of Mesocestoides vogae (syn. Corti) tetrathyridia (Cestoda)-inhibition by cestocidal drugs. Parasitology Research 87, 281286.CrossRefGoogle ScholarPubMed
Siles-Lucas, M. and Hemphill, A. (2002). Cestode parasites: Application of in vivo and in vitro models for studies of host-parasite relationship. Advances in Parasitology 51, 133230.CrossRefGoogle ScholarPubMed
Smyth, J. D. and Davies, Z. (1974). In vitro culture of the strobilar stage of Echinococcus granulosus (sheep strain). A review of basic problems and results. International Journal for Parasitology 4, 631644.CrossRefGoogle Scholar
Smyth, J. D. and McManus, D. P. (1989). Physiology and Biochemistry of Cestodes. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Soldatova, A. P. (1944). A contribution to the study of the development cycle in the cestode Mesocestoides lineatus (Goeze, 1782) parasitic of carnivorous mammals. Doklady Akademii nauk SSSR 45, 310312.Google Scholar
Specht, D. and Voge, M. (1965). Asexual multiplication of Mesocestodes corti tetrathyrdia in laboratory animals. Journal of Parasitology 51, 268272.CrossRefGoogle Scholar
Terenina, N. B., Gustafsson, M. K. S. and Reuter, M. (1995). Serotonin, reserpine, and motility in Mesocestoides tetrathyridia. Parasitology Research 81, 677683.CrossRefGoogle ScholarPubMed
Thompson, R. C. A., Sue, L. P. J. and Buckley, S. J. (1982). In vitro development of the strobilar stage of Mesocestoides corti. International Journal for Parasitology 12, 303314.CrossRefGoogle ScholarPubMed
Vinaud, M. C., Ferreira, C. S., Lino Junior, R DE S. and Bezerra, J. C. (2008). Taenia crassiceps: Energetic and respiratory metabolism from cysticerci exposed to praziquantel and albendazole in vitro. Experimental Parasitology 120, 221226.CrossRefGoogle ScholarPubMed
Willms, K., Roberts, L. and Caro, J. A. (2003). Ultrastructure of smooth muscle, gap junctions and glycogen distribution in Taenia solium tapeworms from experimentally infected hamsters. Parasitology Research 89, 308316.CrossRefGoogle ScholarPubMed
Willms, K., Fernández Presas, A. M., Jiménez, J. A., Landa, A., Zurabián, R., Juarez Ugarte, M. E. and Robert, L. (2005). Taeniid tapeworm responses to in vitro glucose. Parasitology Research 96, 296301.CrossRefGoogle ScholarPubMed