Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T00:54:20.796Z Has data issue: false hasContentIssue false

Leishmania (Viannia) braziliensis: insights on subcellular distribution and biochemical properties of heparin-binding proteins

Published online by Cambridge University Press:  07 November 2011

LUZIA MONTEIRO DE CASTRO CÔRTES
Affiliation:
Laboratório de Biologia Molecular e Doenças Endêmicas, IOC – FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, CEP 21040-360, Brasil
MIRIAN CLAUDIA DE SOUZA PEREIRA
Affiliation:
Laboratório de Ultraestrutura Celular, IOC – FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, CEP 21040-360, Brasil
FRANCISCO ODÊNCIO RODRIGUES DE OLIVEIRA JUNIOR
Affiliation:
Laboratório de Biologia Molecular e Doenças Endêmicas, IOC – FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, CEP 21040-360, Brasil Laboratório de Ultraestrutura Celular, IOC – FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, CEP 21040-360, Brasil
SUZANA CORTE-REAL
Affiliation:
Laboratório de Biologia Estrutural, IOC – FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, CEP 21040-360, Brasil
FRANKLIN SOUZA DA SILVA
Affiliation:
Laboratório de Biologia Molecular e Doenças Endêmicas, IOC – FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, CEP 21040-360, Brasil
BERNARDO ACÁCIO SANTINI PEREIRA
Affiliation:
Laboratório de Biologia Molecular e Doenças Endêmicas, IOC – FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, CEP 21040-360, Brasil
MARIA DE FÁTIMA MADEIRA
Affiliation:
Laboratório de Vigilância em Leishmanioses, IPEC – FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, CEP 21040-360, Brasil
MARCIA TEREZINHA BARONI DE MORAES
Affiliation:
Laboratório de Virologia Molecular, IOC – FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, CEP 21040-360, Brasil
REGINALDO PEÇANHA BRAZIL
Affiliation:
Laboratório de Bioquímica e Fisiologia de Insetos, IOC – FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, CEP 21040-360, Brasil
CARLOS ROBERTO ALVES*
Affiliation:
Laboratório de Biologia Molecular e Doenças Endêmicas, IOC – FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, CEP 21040-360, Brasil
*
*Corresponding author: LABIMDOE, IOC, Fiocruz. Av. Brasil 4365, CP 926, 21040-360, Manguinhos, Rio de Janeiro, RJ, Brazil. E-mail: [email protected]

Summary

Leishmaniasis is a vector-borne disease and an important public health issue. Glycosaminoglycan ligands in Leishmania parasites are potential targets for new strategies to control this disease. We report the subcellular distribution of heparin-binding proteins (HBPs) in Leishmania (Viannia) braziliensis and specific biochemical characteristics of L. (V.) braziliensis HBPs. Promastigotes were fractionated, and flagella and membrane samples were applied to HiTrap Heparin affinity chromatography columns. Heparin-bound fractions from flagella and membrane samples were designated HBP Ff and HBP Mf, respectively. Fraction HBP Ff presented a higher concentration of HBPs relative to HBP Mf, and SDS-PAGE analyses showed 2 major protein bands in both fractions (65 and 55 kDa). The 65 kDa band showed gelatinolytic activity and was sensitive to inhibition by 1,10-phenanthroline. The localization of HBPs on the promastigote surfaces was confirmed using surface plasmon resonance (SPR) biosensor analysis by binding the parasites to a heparin-coated sensor chip; that was inhibited in a dose-dependent manner by pre-incubating the parasites with variable concentrations of heparin, thus indicating distinct heparin-binding capacities for the two fractions. In conclusion, protein fractions isolated from either the flagella or membranes of L. (V.) braziliensis promastigotes have characteristics of metallo-proteinases and are able to bind to glycosaminoglycans.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves, C. R., Marzochi, M. C. and Giovanni-de-Simone, S. (1993). Heterogeneity of cysteine proteinases in Leishmania braziliensis and Leishmania major. Brazilian Journal of Medical and Biological Research 26, 167171.Google Scholar
Alves, J. L., Mendonca-Lima, F. W. and Alves, C. R. (2004). The use of metal chelate affinity chromatography on the isolation of Leishmania chagasi promastigote hydrophobic proteinases. Veterinary Parasitology 30, 137145.CrossRefGoogle Scholar
Azevedo-Pereira, R. L., Pereira, M. C. S., Oliveira, F. O. R. Jr., Brazil, R. P., Côrtes, L. M. C., Madeira, M. F., Santos, A. L. S., Toma, L. and Alves, C. R. (2007). Heparin binding proteins from Leishmania (Viannia) braziliensis promastigotes. Veterinary Parasitology 145, 234239.Google Scholar
Bates, P. A. and Rogers, M. E. (2004). New insights into the developmental biology and transmission mechanisms of Leishmania. Current Molecular Medicine 4, 601609.Google Scholar
Becker, I., Salaiza, N., Aguirre, M., Delgado, J., Carrillo-Carrasco, N., Kobeh, L. G., Ruiz, A., Cervantes, R., Torres, A. P., Cabrera, N., González, A., Maldonado, C. and Isibasi, A. (2003). Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Molecular and Biochemical Parasitology 130, 6574.Google Scholar
Bergwerff, A. A. and van Knapen, F. (2006). Surface plasmon resonance biosensors for detection of pathogenic microorganisms: strategies to secure food and environmental safety. Journal of AOAC International 89, 826831.Google Scholar
Brandonisio, O., Spinelli, R. and Pepe, M. (2004). Dendritic cells in Leishmania infection. Microbes and infection 6, 14021409.Google Scholar
Brittingham, A., Morrison, C. J., McMaster, W. R., McGwire, B. S., Chang, K. P. and Mosser, D. M. (1995). Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. The Journal of Immunology 155, 31023111.CrossRefGoogle ScholarPubMed
Butcher, B. A., Sklar, L. A., Seamer, L. C. and Glew, R. H. (1992). Heparin enhances the interaction of infective Leishmania donovani promastigotes with mouse peritoneal macrophages. A fluorescence flow cytometric analysis. Journal of Immunology 148, 28792886.Google Scholar
Cassaro, C. M. and Dietrich, C. P. (1977). Distribution of sulfated mucopolysaccharides in invertebrates. The Journal of Biological Chemistry 252, 22542261.Google Scholar
Chava, A. K., Bandyopadhyay, S., Chatterjee, M. and Mandal, C. (2004). Sialoglycans in protozoal diseases: their detection, modes of acquisition and emerging biological roles. Glycoconjugate Journal 20, 199206.Google Scholar
Cuervo, P., Saboia-Vahia, L., Costa Silva-Filho, F., Fernandes, O., Cupolillo, E. and dE Jesus, J. B. (2006). A zymographic study of metalloprotease activities in extracts and extracellular secretions of Leishmania (Viannia) braziliensis strains. Parasitology 132, 177185.Google Scholar
Dam, T. K., Bandyopadhyay, P., Sarkar, M., Ghosal, J., Bhattacharya, A. and Choudhury, A. (1994). Purification and partial characterization of a heparin-binding lectin from the marine clam Anadara granosa. Biochemical and Biophysical Research Communication 203, 3645.Google Scholar
de Souza, W. and da Cunha-e- Silva, N. L. (2003). Cell fractionation of parasitic protozoa – a review. Memórias do Instituto Oswaldo Cruz 98, 151170.CrossRefGoogle ScholarPubMed
Descoteaux, A. and Turco, S. J. (1999). Glycoconjugates in Leishmania infectivity. Biochemistry and Biophysical Acta 1455, 341352.Google ScholarPubMed
Dietrich, C. P., Sampaio, L. O., Montes, D. E., OCA, H. and Nader, H. B. (1980). Role of sulfated mucopolysaccharides in cell recognition and neoplastic transformation. Anais da Academia Brasileira de Ciências 52, 179186.Google Scholar
Dreyfuss, J. L., Regatieri, C. V., Jarrouge, T. R., Cavalheiro, R. P., Sampaio, L. O. and Nader, H. B. (2009). Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. Anais da Academia Brasileira de Ciências 81, 409429.Google Scholar
Heussen, C. and Dowdle, E. B. (1980). Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copalymerized substrates. Analytical Biochemistry 102, 196202.Google Scholar
Hide, M., Tsutsui, T., Sato, H., Nishimura, T., Morimoto, K., Yamnoto, S. and Yoshizato, K. (2002). Real-time analysis of ligand-induced cell surface and intracellular reactions of living mast cells using a surface-plasmon resonance-based biosensor. Analytical Biochemistry 302, 2837.Google Scholar
Kahl, L. P. and McMahon-Pratt, D. (1987). Structural and antigenic characterization of a species- and promastigote-specific Leishmania mexicana amazonensis membrane protein. The Journal of Immunology 138, 15871595.Google Scholar
Kamhawi, S. (2006). Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends in Parasitology 22, 439–345.CrossRefGoogle ScholarPubMed
Kock, N. P., Gabius, H. J., Schmitz, J. and Schotteliu, J. (1997). Receptors for carbohydrate ligands including heparin on the cell surface of Leishmania and other trypanosomatids. Tropical Medicine and International Health 2, 863874.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.Google Scholar
Lainson, R. and Shaw, J. J. (1987). Evolution, classification and geographical distribution. In The Leishmaniases in Biology and Medicine (ed. Peters, W. and Killick-Kendrick, E.), pp. 1120. Academic Press, London, UK.Google Scholar
Lodge, R. and Descoteaux, A. (2008). Leishmania invasion and phagosome biogenesis. Subcellular Biochemistry 47, 174181.CrossRefGoogle ScholarPubMed
Love, D. C., Esko, J. D. and Mosser, D. M. (1993). A heparin-binding activity on Leishmania amastigotes which mediates adhesion to cellular proteoglycans. The Journal of Cell Biology 123, 759766.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.Google Scholar
McConville, M. J., Homans, S. W., Thomas-Oates, J. E., Dell, A. and Bacic, A. (1990). Structures of the glycoinositolphospholipids from Leishmania major. A family of novel galactofuranose-containing glycolipids. Journal of Biological Chemistry 265, 73857394.Google Scholar
Moody, S. F. (1993). Molecular variation in Leishmania. Acta Tropica 53, 185204.CrossRefGoogle ScholarPubMed
Morgado-Diaz, J. A., Silva-Lopez, R. E., Alves, C. R., Soares, M. J., Corte-Real, S. and Giovanni-De-Simoni, S. (2005). Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania) amazonensis promastigotes. Memórias do Instituto Oswaldo Cruz 100, 377383.Google Scholar
Mukhopadhyay, N. K., Shome, K., Saha, A. K., Hassell, J. R. and Glew, R. H. (1989). Heparin binds to Leishmania donovani promastigotes and inhibits protein phosphorylation. The Biochemical Journal 264, 517525.Google Scholar
Murray, P. J., Spithill, T. W. and Handman, E. (1989). The PSA-2 glycoprotein complex of Leishmania major is a glycosylphosphatidylinositol-linked promastigote surface antigen. The Journal of Immunology 143, 42214226.Google Scholar
Nader, H. B., Ferreira, T. M., Paiva, J. F., Medeiros, M. G., Jeronimo, S. M., Paiva, V. M. and Dietrich, C. P. (1984). Isolation and structural studies of heparan sulfates and chondroitin sulfates from three species of molluscs. The Journal of Biological Chemistry 259, 14311435.Google Scholar
Nader, H. B., Chavante, S. F., dos-Santos, E. A., Oliveira, T. W., de-Paiva, J. F., Jerônimo, S. M., Medeiros, G. F., de-Abreu, L. R., Leite, E. L., de-Sousa-Filho, J. F., Castro, R. A., Toma, L., Tersariol, I. L., Porcionatto, M. A. and Dietrich, C. P. (1999). Heparan sulfates and heparins: similar compounds performing the same functions in vertebrates and invertebrates? Brazilian Journal of Medical and Biological Research 32, 529538.Google Scholar
Naderer, T., Vince, J. E. and McConville, M. J. (2004). Surface determinants of Leishmania parasites and their role in infectivity in the mammalian host. Current Molecular Medicine 4, 649665.Google Scholar
Novozhilova, N. M. and Bovin, N. V. (2010). Structure, functions, and biosynthesis of glycoconjugates of Leishmania spp. cell surface. Biochemistry 75, 686694.Google ScholarPubMed
Oliveira, F. O. Jr., Alves, C. R., Calvet, C. M., Toma, L., Bouças, R. I., Nader, H. B., Castro Côrtes, L. M., Krieger, M. A., Meirelles, M. de N. and Souza Pereira, M. C. (2008). Trypanosoma cruzi heparin-binding proteins and the nature of the host cell heparan sulfate-binding domain. Microbial and Pathogenesis 44, 329338.CrossRefGoogle ScholarPubMed
Ortega-Barria, E. and Pereira, M. E. (1991). A novel T. cruzi heparin binding protein promotes fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells. Cell 67, 411421.Google Scholar
Pimenta, P. F., Modi, G. B., Pereira, S. T., Shahabuddin, M. and Sacks, D. L. (1997). A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut. Parasitology 115, 359369.CrossRefGoogle ScholarPubMed
Quinn, J. G., O'Neill, S., Doyle, A., McAtamney, C., Diamond, D., McCraith, B. D. and O'Kennedy, R. (2000). Development and application of surface Plasmon resonance-based biosensors for the detection of cell-ligand interactions. Analytical Biochemistry 261, 135143.Google Scholar
Rangel, E. F. and Lainson, R. (2003). Ecologia das leishmanioses. Transmissores de leishmaniose tegumentar Americana. In Flebotomíneos do Brasil (ed. Rangel, E. F. and Lainson, R.), pp. 291309. Fiocruz, Rio de Janeiro, Brazil.Google Scholar
Rathore, D., McCutchan, T. F., Garboczi, D. N., Toida, T., Hernáiz, M. J., LeBrun, L. A., Lang, C. S. and Linhardt, R. J. (2001). Direct measurement of the interactions of glycosaminoglycans and a heparin decasaccharide with the malaria circumsporozoite protein. Biochemistry 40, 1151811524.Google Scholar
Rebello, K. M., Côrtes, L. M., Pereira, B. A., Pascarelli, B. M., Côrte-Real, S., Finkelstein, L. C., Pinho, R. T., d'Avila-Levy, C. M. and Alves, C. R. (2009). Cysteine proteinases from promastigotes of Leishmania (Viannia) braziliensis. Parasitology Research 106, 95104.Google Scholar
Reithinger, R., Dujardin, J. C., Louzir, H., Pirmez, C., Alexander, B. and Brooker, S. (2007). Cutaneous leishmaniasis. The Lancet Infectious Diseases 7, 581596.Google Scholar
Sacks, D. and Kamhawi, S. (2001). Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annual Review of Microbiology 55, 453–83.Google Scholar
Soares, R. P., Margonari, C., Secundino, N. C., Macedo, M. E., da Costa, S. M., Rangel, E. F., Pimenta, P. F. and Turco, S. J. (2010). Differential midgut attachment of Leishmania (Viannia) braziliensis in the sand flies Lutzomyia (Nyssomyia) whitmani and Lutzomyia (Nyssomyia) intermedia. Journal of Biomedicine and Biotechnology 2010, doi: 10.1155/2010/439174 <http://dx.crossref.org/10.1155%2F2010%2F439174>.Google Scholar
Soares, R. P., Cardoso, T. L., Barron, T., Araújo, M. S., Pimenta, P. F. and Turco, S. J. (2005). Leishmania braziliensis: a novel mechanism in the lipophosphoglycan regulation during metacyclogenesis. International Journal for Parasitology 35, 245253.Google Scholar
Soong, L. (2008). Modulation of dendritic cell function by Leishmania parasites. The Journal of Immunology 180, 43554360.Google Scholar
Strauss, A. H., Nader, H. B., Takahashi, H. K. and Dietrich, C. P. (1982). Ontogeny of heparin in mammals: a correlation with the appearance of mast cells in tissues. Anais da Academia Brasileira de Ciências 54, 439448.Google Scholar
Symons, F. M., Murray, P. J., Ji, H., Simpson, R. J., Osborn, A. H. and Cappai, R. (1994). Characterization of a polymorphic family of integral membrane proteins in promastigotes of different Leishmania species. Molecular and Biochemical Parasitology 67, 103113.Google Scholar
Tanious, F. A., Nguyen, B. and Wilson, W. D. (2008). Biosensor-surface plasmon resonance methods for quantitative analysis of biomolecular interactions. Methods in Cell Biology 84, 5377.Google Scholar
Terao-Muto, Y., Yoneda, M., Seki, T., Watanabe, A., Tsukiyama-Kohara, K., Fujita, K. and Kai, C. (2008). Heparin-like glycosaminoglycans prevent the infection of measles virus in SLAM-negative cell lines. Antiviral Research 80, 370376.CrossRefGoogle ScholarPubMed
Velasco-Garcia, M. N. (2009). Optical biosensors for probing at the cellular level: a review of recent progress and future prospects. Seminars in Cell & Developmental Biology 20, 2733.CrossRefGoogle Scholar
Volf, P., Svobodova, M. and Dvorakova, E. (2001). Bloodmeal digestion, Leishmania major infections in Phlebotomus duboscqi: effect of carbohydrates inhibiting midgut lectin activity. Medicine Veterinary Entomology 15, 281286.CrossRefGoogle ScholarPubMed
Yao, C. (2010). Major surface protease of trypanosomatids: one size fits all? Infection and Immunity 78, 2231.Google Scholar