Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T15:17:18.833Z Has data issue: false hasContentIssue false

Leishmania (Leishmania) amazonensis infection and dissemination in mice inoculated with stationary-phase or with purified metacyclic promastigotes

Published online by Cambridge University Press:  27 July 2007

T. C. FELIZARDO*
Affiliation:
Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1730, 05508-900, São Paulo, SP, Brasil
L. S. TOMA
Affiliation:
Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1730, 05508-900, São Paulo, SP, Brasil
N. B. BORGES
Affiliation:
Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1730, 05508-900, São Paulo, SP, Brasil
G. M. C. A. LIMA
Affiliation:
Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1730, 05508-900, São Paulo, SP, Brasil
I. A. ABRAHAMSOHN
Affiliation:
Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1730, 05508-900, São Paulo, SP, Brasil
*
*Corresponding author. Tel:/Fax: +55 11 3091 7383. E-mail: [email protected].

Summary

Leishmania (Leishmania) amazonensis is a protozoan of the American Continent that causes localized cutaneous leishmaniasis and, rarely, the diffuse cutaneous form of disease in humans. It has become clear in recent years that the course of Leishmania major infection in the mouse model differs when low numbers of purified metacyclic forms are used as inocula in comparison with the traditionally hitherto studied infection models that used large numbers of stationary-phase (SP) promastigotes. The low-number metacyclic inocula are thought to reproduce more closely the natural infection transmitted by the vector. In the present study the course of L. amazonensis infection, its local and distant dissemination patterns, and parasite load were compared in susceptible BALB/c and relatively resistant C57BL/6 mice infected in the footpad with inocula of 107 SP-promastigotes or with 104 purified metacyclic forms. Longer lag-phases were observed for infection with purified metacyclics but the characteristic patterns of disease susceptibility and cytokine production for either mouse strain were similar to those observed for SP-promastigote inocula. An inoculation dose of the order of 104 metacyclics was required to obtain consistent infections; 10- or 100-fold lower doses resulted in variable infection rates. Characteristically, L. amazonensis infection spread to distant organs and persisted there also in the relatively resistant C57BL/6 mice examined after 6 months of infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aebischer, T., Moody, S. F. and Handman, E. (1993). Persistence of virulent Leishmania major in murine cutaneous leishmaniasis: a possible hazard for the host. Infection and Immunity 61, 220226.CrossRefGoogle ScholarPubMed
Afonso, L. C. and Scott, P. (1993). Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonensis. Infection and Immunity 61, 29522959.CrossRefGoogle ScholarPubMed
Aguilar Torrentera, F., Lambot, M. A., Laman, J. D., Van Meurs, M., Kiss, R., Noel, J. C. and Carlier, Y. (2002). Parasitic load and histopathology of cutaneous lesions, lymph node, spleen, and liver from BALB/c and C57BL/6 mice infected with Leishmania mexicana. American Journal of Tropical Medicine and Hygiene 66, 273279.CrossRefGoogle ScholarPubMed
Almeida, R. P., Barral-Netto, M., De Jesus, A. M., De Freitas, L. A., Carvalho, E. M. and Barral, A. (1996). Biological behavior of Leishmania amazonensis isolated from humans with cutaneous, mucosal, or visceral leishmaniasis in BALB/C mice. American Journal of Tropical Medicine and Hygiene 54, 178184.CrossRefGoogle ScholarPubMed
Belkaid, Y., Mendez, S., Lira, R., Kadambi, N., Milon, G. and Sacks, D. (2000). A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. The Journal of Immunology 165, 969977.CrossRefGoogle ScholarPubMed
Chaves, C. S., Soares, D. C., Da Silva, R. P. and Saraiva, E. M. (2003). Characterization of the species- and stage-specificity of two monoclonal antibodies against Leishmania amazonensis. Experimental Parasitology 103, 152159.CrossRefGoogle ScholarPubMed
Courret, N., Lang, T., Milon, G. and Antoine, J. C. (2003). Intradermal inoculations of low doses of Leishmania major and Leishmania amazonensis metacyclic promastigotes induce different immunoparasitic processes and status of protection in BALB/c mice. International Journal for Parasitology 33, 13731383.CrossRefGoogle ScholarPubMed
Courret, N., Prina, E., Mougneau, E., Saraiva, E. M., Sacks, D. L., Glaichenhaus, N. and Antoine, J. C. (1999). Presentation of the Leishmania antigen LACK by infected macrophages is dependent upon the virulence of the phagocytosed parasites. European Journal of Immunology 29, 762773.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Da Silva, R. and Sacks, D. L. (1987). Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infection and Immunity 55, 28022806.CrossRefGoogle Scholar
Doherty, T. M. and Coffman, R. L. (1996). Leishmania major: effect of infectious dose on T cell subset development in BALB/c mice. Experimental Parasitology 84, 124135.CrossRefGoogle Scholar
Hedrich, H. J. (2004). Normative histology of organs. In The Laboratory Mouse (ed. Bullock, G. R. and Petrusz, P.), pp. 133165. Elsevier Academic Press, Boston.Google Scholar
Lang, T., Courret, N., Colle, J.-H., Milon, G. and Antoine, J.-C. (2003). The levels and patterns of cytokines produced by CD4 T lymphocytes of BALB/c mice infected with Leishmania major by inoculation into the ear dermis depend on the infectiousness and size of the inoculum. Infection and Immunity 71, 26742683. 10.1128/IAI.71.5.2674-2683.2003CrossRefGoogle ScholarPubMed
Laskay, T., Diefenbach, A., Rollinghoff, M. and Solbach, W. (1995). Early parasite containment is decisive for resistance to Leishmania major infection. European Journal of Immunology 25, 22202227.CrossRefGoogle ScholarPubMed
Lima, G. M., Puel, A., Decreusefond, C., Bouthillier, Y., Mevel, J. C., Abrahamsohn, I. A. and Mouton, D. (1998). Susceptibility and resistance to Leishmania amazonensis in H-2q syngeneic high and low antibody responder mice (Biozzi mice). Scandinavian Journal of Immunology 48, 144151.CrossRefGoogle ScholarPubMed
Lima, H. C., Bleyenberg, J. A. and Titus, R. G. (1997). A simple method for quantifying Leishmania in tissues of infected animals. Parasitology Today 13, 8082.CrossRefGoogle ScholarPubMed
Lira, R., Doherty, M., Modi, G. and Sacks, D. (2000). Evolution of lesion formation, parasitic load, immune response, and reservoir potential in C57BL/6 mice following high- and low-dose challenge with Leishmania major. Infection and Immunity 68, 51765182.CrossRefGoogle ScholarPubMed
Mcmahon-Pratt, D. and Alexander, J. (2004). Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniasis or the visceral disease? Immunology Reviews 201, 206224.CrossRefGoogle ScholarPubMed
Mendonca, M. G., De Brito, M. E., Rodrigues, E. H., Bandeira, V., Jardim, M. L. and Abath, F. G. (2004). Persistence of Leishmania parasites in scars after clinical cure of American cutaneous leishmaniasis: is there a sterile cure? Journal of Infectious Diseases 189, 10181023.CrossRefGoogle Scholar
Menon, J. N. and Bretscher, P. A. (1996). Characterization of the immunological memory state generated in mice susceptible to Leishmania major following exposure to low doses of L. major and resulting in resistance to a normally pathogenic challenge. European Journal of Immunology 26, 243249.CrossRefGoogle ScholarPubMed
Pinto-Da-Silva, L. H., Fampa, P., Soares, D. C., Oliveira, S. M., Souto-Padron, T. and Saraiva, E. M. (2005). The 3A1-La monoclonal antibody reveals key features of Leishmania (L) amazonensis metacyclic promastigotes and inhibits procyclics attachment to the sand fly midgut. International Journal for Parasitology 35, 757764.CrossRefGoogle Scholar
Qi, H., Ji, J., Wanasen, N. and Soong, L. (2004). Enhanced replication of Leishmania amazonensis amastigotes in gamma interferon-stimulated murine macrophages: implications for the pathogenesis of cutaneous leishmaniasis. Infection and Immunity 72, 988995.CrossRefGoogle ScholarPubMed
Rogers, M. E., Ilg, T., Nikolaev, A. V., Ferguson, M. A. and Bates, P. A. (2004). Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature, London 430, 463467.CrossRefGoogle ScholarPubMed
Sacks, D. and Noben-Trauth, N. (2002). The immunology of susceptibility and resistance to Leishmania major in mice. Nature Reviews Immunology 2, 845858.CrossRefGoogle ScholarPubMed
Sacks, D. L., Hieny, S. and Sher, A. (1985). Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes. Journal of Immunology 135, 564569.CrossRefGoogle ScholarPubMed
Schubach, A., Haddad, F., Oliveira-Neto, M. P., Degrave, W., Pirmez, C., Grimaldi, G. Jr. and Fernandes, O. (1998). Detection of Leishmania DNA by polymerase chain reaction in scars of treated human patients. Journal of Infectious Disease 178, 911914.CrossRefGoogle ScholarPubMed
Taswell, C. (1986). Limiting dilution assays for the separation, characterization and quantification of biologically active particles and their clonal progeny: statistical methods for LDA used by ELIDA. In Cell Separation: Selected Methods and Applications (ed. Pretlow, T. G and Pretlow, T. P), pp. 109145. Academic Press, New York.Google Scholar
Uzonna, J. E., Wei, G., Yurkowski, D. and Bretscher, P. (2001). Immune elimination of Leishmania major in mice: implications for immune memory, vaccination, and reactivation disease. Journal of Immunology 167, 69676974.CrossRefGoogle ScholarPubMed
Van Zandbergen, G., Bollinger, A., Wenzel, A., Kamhawi, S., Voll, R., Klinger, M., Muller, A., Holscher, C., Herrmann, M., Sacks, D., Solbach, W. and Laskay, T. (2006). Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum. Proceedings of the National Academy of Sciences, USA 103, 1383713842.CrossRefGoogle ScholarPubMed
Vergel, C., Palacios, R., Cadena, H., Posso, C. J., Valderrama, L., Perez, M., Walker, J., Travi, B. L. and Saravia, N. G. (2006). Evidence for Leishmania (Viannia) parasites in the skin and blood of patients before and after treatment. Journal of Infectious Diseases 194, 503511.CrossRefGoogle ScholarPubMed
Warburg, A. and Schlein, Y. (1986). The effect of post-bloodmeal nutrition of Phlebotomus papatasi on the transmission of Leishmania major. American Journal of Tropical Medicine and Hygiene 35, 926930.CrossRefGoogle ScholarPubMed