Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T07:24:29.342Z Has data issue: false hasContentIssue false

Is sex-biased ectoparasitism related to sexual size dimorphism in small mammals of Central Europe?

Published online by Cambridge University Press:  14 September 2004

S. MORAND
Affiliation:
CBGP (Centre de Biologie et de Gestion des Populations, UMR CIRAD-INRA-IRD-Agro.M.), Campus International de Baillarguet CS 30 016, 34988 Montferrier sur Lez Cédex, France
J. GOÜY DE BELLOCQ
Affiliation:
CBGP (Centre de Biologie et de Gestion des Populations, UMR CIRAD-INRA-IRD-Agro.M.), Campus International de Baillarguet CS 30 016, 34988 Montferrier sur Lez Cédex, France
M. STANKO
Affiliation:
Institut of Zoology, Slovak Academy of Sciences, Löfflerova 10, SK – 04001 Kosice, Slovakia
D. MIKLISOVÁ
Affiliation:
Institut of Zoology, Slovak Academy of Sciences, Löfflerova 10, SK – 04001 Kosice, Slovakia

Abstract

Sexual size dimorphism (SSD) in mammals reveals the extent of sexual selection, which may in turn explain why males are often more infected by parasites than females and that parasites may contribute to the association between SSD and male-biased mortality. Here, we investigated the relationship between SSD in small mammals of Central Europe and the differences in sex infection by fleas. A comparative analysis was conducted for 10 species of rodents and insectivores. We found that males harbour higher flea species richness than females and that the abundance of fleas is higher in males than in females. This difference is not related to male-biased density. However, contrary to our hypothesis, we found that an increase in SSD is not related to an increase in male infection by fleas compared with female infection. We discuss our results in term of sex-differences in immunocompetence and/or sex-differences in behaviour.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ANDERSSON, M. (1994). Sexual Selection. Princeton University Press, Princeton.
BUJALSKA, G. (1993). Female and male territoriality in the bank vole. Physiology and Ecology Japan 29, 5669.Google Scholar
CHARNOV, E. L. (1993). Life History Invariants. Some Explorations of Symmetry in Evolutionary Ecology. Oxford University Press, Oxford.
BARNARD, C. J. & BEHNKE, J. M. (2001). From psychoneuroimmunology to ecological immunology: life history strategies and immunity trade-offs. In Psychoneuroimmunology (ed. Ader, R., Felten, D. & Cohen, N.), pp. 3547. Academic Press, San Diego.
CHRISTE, P., ARLETTAZ, R. & VOGEL, P. (2000). Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecology Letters 3, 207212.CrossRefGoogle Scholar
EDLER, A. & NILSSON, A. (1973). Numerical relations between groups of ectoparasites infesting small mammals. Entomologia Scandinavia 4, 274282.Google Scholar
FELSENSTEIN, J. (1985). Phylogenies and the comparative method. American Naturalist 125, 115.CrossRefGoogle Scholar
FOLSTAD, I. & KARTER, A. J. (1992). Parasites, bright males, and the immunocompetence handicap. American Naturalist 139, 603622.CrossRefGoogle Scholar
GARLAND, T. Jr., HARVEY, P. H. & IVES, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41, 1832.CrossRefGoogle Scholar
HUGHES, V. L. & RANDOLPH, S. E. (2001). Testosterone increases the transmission potential of tick-borne parasites. Parasitology 123, 365371.CrossRefGoogle Scholar
KLEIN, S. L. (2000). The effects of hormones on sex differences in infection: from genes to behavior. Neuroscience and Biobehavioral Reviews 24, 627638.CrossRefGoogle Scholar
KLEIN, S. L., GAMBLE, H. R. & NELSON, R. J. (1997). Sex differences in Trichinella spiralis infection are not mediated by circulating steroid hormones in voles. Hormones and Behavior 32, 3039.CrossRefGoogle Scholar
LEWIN, R. (1988). Why is the world full of large females? Science 240, 884.Google Scholar
MATUSCHKA, F. R., FISCHER, P., HEILER, M., RICHTER, D. & SPIELMAN, A. (1992). Capacity of european animals as reservoir hosts for the lyme disease spirochete. Journal of Infectious Diseases 165, 479483.CrossRefGoogle Scholar
McLAIN, D. K. (1993). Cope's rules, sexual selection, and the loss of ecological plasticity. Oikos 68, 490500.CrossRefGoogle Scholar
MØLLER, A. P. (1994). Sexual Selection and the Barn Swallow. Oxord University Press, Oxford.
MØLLER, A. P. (1997). Parasitism and the evolution of host life history. In Host–Parasite Evolution. General Principles and Avian Models (ed. Clayton, D. H. & Moore, J.), pp. 105127. Oxford University Press, Oxford.
MØLLER, A. P., SORCI, G. & ERRITZØE, J. (1998). Sexual dimorphism in immune defense. American Naturalist 152, 605619.CrossRefGoogle Scholar
MØLLER, A. P., CHRISTE, P. & LUX, E. (1999). Parasitism, host immune function, and sexual selection. Quarterly Reviews of Biology 74, 330.CrossRefGoogle Scholar
MOORE, S. L. & WILSON, K. (2002). Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297, 20152018.CrossRefGoogle Scholar
MORAND, S. (2000). Wormy world: comparative tests of theoretical hypotheses on parasite species richness. In Evolutionary Biology of Host–Parasite Relationships: Reality Meets Models (ed. Poulin, R., Morand, S. & Skorping, A.), pp. 6379. Elsevier, Amsterdam.
MORAND, S. & POULIN, R. (1998). Density, body mass and parasite species richness of terrestrial mammals. Evolutionary Ecology 12, 717727.CrossRefGoogle Scholar
POULIN, R. (1996). Sexual inequalities in helminth infections: a cost of being male? American Naturalist 147, 287295.Google Scholar
POULIN, R. (1998). Evolutionary Ecology of Parasites. Chapman and Hall, New York.
POULIN, R. & MORAND, S. (2000). The diversity of parasites. Quarterly Reviews of Biology 75, 277293.CrossRefGoogle Scholar
PROMISLOW, D. E. L. (1992). Costs of sexual selection in natural populations of mammals. Proceedings of the Royal Society of London, B 247, 203210.CrossRefGoogle Scholar
PURVIS, A. & RAMBAUT, A. (1995). Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Computer Applications for the Biosciences 11, 247251.CrossRefGoogle Scholar
SHINE, R. (1989). Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Quarterly Reviews of Biology 64, 419461.CrossRefGoogle Scholar
SOLIMAN, S., MARZOUK, A. S., MAIN, A. J. & MONTASSER, A. A. (2001). Effect of sex, size, and age of commensal rat hosts on the infestation parameters of their ectoparasites in a rural area of Egypt. Journal of Parasitology 87, 13081316.CrossRefGoogle Scholar
STANKO, M. (1987 a). Fleas (Siphonaptera) of small mammals from Javorie mountains (in Slovak). Acta Rerum Naturalium Musei Nationalis Slovaci Bratislava 33, 95108.Google Scholar
STANKO, M. (1987 b). Siphonaptera of small mammals in the northern part of the Krupina plain (in Slovak). Stredné Slovensko, Zborník Stredoslovenského múzea v Banskej Bystrici 6, 108117.Google Scholar
STANKO, M. (1988). Fleas (Siphonaptera) of small mammals in eastern part of Volovské vrchy mountains (in Slovak). Acta Rerum Naturalium Musei Nationalis Slovaci 34, 2940.Google Scholar
STANKO, M. (1994). Fleas synusy (Siphonaptera) of small mammals from the central part of the East-Slovakian lowlands. Biologia, Bratislava 49, 239246.Google Scholar
STANKO, M., MIKLISOVÁ, D., GOÜY DE BELLOCQ, J. & MORAND, S. (2002). Mammal density and patterns of ectoparasite species richness and abundance. Oecologia 131, 289295.CrossRefGoogle Scholar
TEW, T. E. & McDONALD, D. W. (1994). Dynamics of space use and male vigour amongst wood mouse, Apodemus sylvaticus, in the cereal ecosystems. Behavioral Ecology and Sociobiology 34, 337345.CrossRefGoogle Scholar
TINSLEY, R. C. (1989). The effects of host sex on transmission success. Parasitology Today 5, 190195.CrossRefGoogle Scholar
ZUK, M. (1990). Reproductive strategies and disease susceptibility: an evolutionary viewpoint. Parasitology Today 6, 231233.CrossRefGoogle Scholar
ZUK, M. (1996). Disease, endocrine-immune interactions, and sexual selection. Ecology 77, 10371042.CrossRefGoogle Scholar
ZUK, M. & McKEAN, K. A. (1996). Sex difference in parasite infections: patterns and processes. International Journal for Parasitology 26, 10091024.CrossRefGoogle Scholar